博碩士論文 103328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.135.198.49
姓名 陸梭(Russel Sevilla)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響
(A CFD modeling of catalyst deactivation via carbon deposition during catalytic biomass fast pyrolysis)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 反向氣流對微小粉末於儲槽排放行為影響之研究★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化
★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響
★ 移動式顆粒床過濾器應用於去除PM2.5之研究★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對生物質在快速熱解期間催化劑的去活反應,以混合雲杉及松樹做為原料,採用COMSOL Multiphysics 5.3 進行模擬。研究中考慮之去活模式是由於碳沉積在催化劑表面上形成空隙堵塞,使反應物無法流經其活性位點,造成活性催化轉換過程的低落,故本研究目標乃探討不同溫度(773、823 及873 k )及流化氣體速度(0.4、0.5 及0.6 m/s)下的去活狀況。由結果可得,去活行為,會因為高溫造成孔隙的減少而快速的發生,而對於流化氣體速度而言,如其他研究人員所提出,氣體速度明顯的影響物質的停留時間,現象亦對去活行為有著巨大的影響。本論文中,沿流化氣體速度0.4、0.5 及0.6 m/s 下催化劑中心線的平均孔隙率為0.49、0.483 及0.498,然而當考慮催化床體整體表面時,則可明顯的發現,較低的氣體速度對去活行為會優於較高的氣體速度,即較高的氣體速 度因停留時間較短,造成表面的積碳較少,故催化劑會因為在高溫低流化氣體速度下形 成較多的碳沉積物造成其活性降低。
摘要(英) The present study investigates about the deactivation of catalyst during the fast pyrolysis of biomass. A mixture of spruce and pine was used as the feedstock. The simulations were carried out using COMSOL Multiphysics 5.3. The study aims to determine the behavior of deactivation on various operating parameters or conditions: different temperature (773, 823, and 873 K) and fluidizing gas velocity (0.4, 0.5, and 0.6 m/s). The mode of deactivation considered in this study was due to carbon deposition or fouling, blockage of the pore of the catalyst due to coke deposits on the surface of the catalyst that prevents the reactants to flow through its active sites, thus, decreasing the activity of the catalytic conversion process. The results showed that at high temperature the deactivation occurs rapidly for the porosity decreases the most at the said condition. Gas velocity greatly affects the time on stream of the species which also affects the deactivation of the catalyst as also mentioned by other researchers. The average porosity along the centerline of the catalyst bed at 0.4, 0.5, and 0.6 m/s is about 0.49, 0.483, and 0.498, respectively. Although, when the whole surface of the catalyst bed was considered, it is noticeable that the least gas velocity suffered from deactivation more than that of with high fluidizing gas velocity which means that the catalyst has the least carbon deposits on the catalyst bed. In conclusion, the catalyst gathered carbon deposits more at high temperature and at low fluidizing gas velocity and with that said, catalyst will deactivate further at this condition. Note that the value of the product should also be considered when performing catalytic biomass fast pyrolysis.
關鍵字(中) ★ 熱裂解
★ 催化劑
★ 生質能
★ 去活化
★ 焦炭
★ 沉積
關鍵字(英) ★ catalyst
★ biomass
★ Pyrolysis
★ deactivation
★ coke
★ deposition
論文目次 摘要 …………………………………………………………………………………..i
Abstract ………………………………………………….….…………………………...ii
Acknowledgements…...………………………………………………………………...iii
Table of Contents ………………………………………………………………………iv
List of Figures…………………………………………………………………………. vii
List of Tables ………………………………………………………………….………...ix
Nomenclature……………………………………………………………………………x
CHAPTER 1 …………………………………………………………………………….1
1.1 Introduction ……………………………………………………………………….1
1.1.1 Biomass resources ……………………………………………………….2
1.1.2 Biomass conversion schemes ………………….…………………………3
Biomass pyrolysis ………………………………………………….3
Pyrolysis oil ……………………………………………………….4
1.1.3 Catalysts ………………………………………………………………….4
Role of catalyst in biomass pyrolysis …………………………….5
1.2 The significance of the Study ……………………………………………………….5
1.3 Objective …………………………………………………………………………….5
CHAPTER 2 …………………………………………………………………………….7
2.1 Introduction to Biomass Energy ………………………………………………….7
2.2 Biomass conversion technology ………………………………………………….7
2.3 Recent studies for biomass pyrolysis …………………………………………...10
2.4 Recent studies on catalytic biomass pyrolysis ………………………………...12
2.4.1 Catalyst Deactivation …………………………………...……………14
v
2.5 Computational Fluid Dynamics ………………………………………………...16
CHAPTER 3 …………………………………………………………………………...21
3.1 Computational Fluid Dynamics ………………………………………………...21
3.2 COMSOL Multiphysics …………………………………………………………...21
3.2.1 Simulation Process ……………………………………………………...21
3.3 Model Description ………………………………………………………………...24
3.3.1 Defining geometry ……………………………………………………...25
3.3.2 Generating mesh ……………………………………………………...27
3.4 Assumptions ……………………………………………………………………...29
3.5 Mathematical Model …………………………………………………………...30
3.5.1 Theory for Euler-Euler Multiphase model interface ………….......…30
Mass Balance ……………………………………………………...30
Momentum Balance …………………………………………...31
Dispersed phase viscosity …………………………...………....32
Interphase momentum transfer ………………………………...33
Solid Pressure ……………………………………………………...34
3.5.2 Theory for Heat Transfer in Solids model interface ………………...34
3.5.3 Theory for Heat Transfer in Fluids model interface ………………...34
3.5.4 Theory for Chemistry interface ……………………………………...36
Chemical reactions ………………………………………………...38
3.5.5 Theory for Transport of Diluted Species model interface …………...42
3.5.6 Theory for Domain ODEs and DAEs model interface ………………...43
3.7 Physics interfaces settings …………………….………………………………..43
3.7.1 Euler-Euler Multiphase model ………………………………..…….45
3.7.2 Heat Transfer model …………………………...……………………48
vi
3.7.3 Transport of Diluted Species model ………………………………...49
3.7.4 Chemistry model ……………………………………………………...51
3.7.5 Domain ODEs and DAEs model ……………………………………...52
3.8 Solver settings ……………………………………………………………………...53
3.9 Material properties ………………………………………………………………...54
3.10 Boundary and initial conditions ………………………………………………...55
3.11 Data Gathering ………………………………………………………………...56
CHAPTER 4 …………………………………………………………………………...58
4.1 Hydrodynamics of fluidized bed reactor…………………………………………...58
4.2 Comparison of products at different conditions ………………….……………..61
4.2.1 Comparison of products during catalytic and non-catalytic pyrolysis ...61
4.2.2 Products at a different temperature during catalytic pyrolysis ……...64
4.2.3 Products at different velocity during catalytic pyrolysis …………...65
4.3 Comparison of catalyst porosity at different conditions ……………..…………….65
4.3.1 The porosity of catalyst at different temperatures ………………….…..67
4.3.2 The porosity of catalyst at different velocities ……………………...70
4.3 Mesh Convergence ………………………………………………………………...72
CHAPTER 5 …………………………………………………………………………...76
References …………………………………………………………………………...77
參考文獻 [1] J.T. Oladeji, E.A. Itabiyi, P.O. Okekunle. A comprehensive review of biomass pyrolysis as
a process of renewable energy generation. Journal of Natural Sciences Research. 5
(2015), 99-105.
[2] R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T.N. Veziroglu, S.I.
Allakhverdiev. Review: Biofuel production from plant and algal biomass.
International Journal of Hydrogen Energy. 41 (2016), 17257–17273.
doi:10.1016/j.ijhydene.2016.07.084.
[3] A. Demirba?. Global Renewable Energy Resources. Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects. 28 (2006), 779–792.
doi:10.1080/00908310600718742.
[4] R.Z. Vigouroux. Pyrolysis of biomass. Royal Institute of Technology. Stockholm, Swede.
(2001).
[5] T. Kan, V. Strezov, T.J. Evans. Lignocellulosic biomass pyrolysis: A review of product
properties and effects of pyrolysis parameters. Renewable and Sustainable Energy
Reviews. 57 (2016), 1126-1140. http://dx.doi.org/10.1016/j.rser.2015.12.185
[6] B. Balagurumurthy, R. Singh, T. Bhaskar. Catalysts for Thermochemical Conversion of
Biomass. Recent Advances in Thermo-Chemical Conversion of Biomass. (2015),
109–132. doi:10.1016/b978-0-444-63289-0.00004-1.
[7] A. Aho, T. Salmi, D.Y. Murzin. Catalytic pyrolysis of lignocellulosic biomass. Role of
Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. (2013),
137-159.
[8] M.J. Antal, S. Allen, X. Dai. B. Shimizu, M.S. Tam and M. Gronli. Attainment of the
theoretical yield of carbon from biomass. Ind. Eng. Chem. Res. 39 (2000), 4024-
4031.
[9] A.V. Bridgwater and G.V.C. Peacoke. Fast pyrolysis process for biomass. Renewable and
Sustainable Energy Reviews. 4 (2000), 1-73.
78
[10] R. Coco, S.B. Reddy Karri and T. Knowlton. Introduction to Fluidization. American
Institute of Chemical Engineers. (2014), 21-29.
[11] S. Yaman. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy and
Conversion Management. 45 (2004), 651-671.
[12] A.I. Bamigboye and O. Oniya. Pyrolytic conversion of corncobs to medium grade fuels
and chemical preservatives. 3 (2003), 50-53.
[13] G.W. Huber, S. Iborra, A. Corma. Chem. Rev. 10.6 (2006) 848.
[14] C. Satyanarayana, D. Srikant, H. Gurav. Catalyst Deactivation and Regeneration,
Industrial Catalytic Processes for Fine and Specialty Chemicals. (2016), 187–219.
[15] U.S. Department of Energy. Biomass Energy Basics. Biomass Energy Basics | NREL, U.S.
Department of Energy, www.nrel.gov/workingwithus/re-biomass.html. Accessed
21 Sept. 2017.
[16] A. Sharma, V. Pareek, D. Zhang. Biomass pyrolysis—A review of modelling, process
parameters and catalytic studies. Renewable and Sustainable Energy Reviews. 50
(2015), 1081–1096.
[17] R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T.N. Veziroglu, S.I.
Allakhhverdiev. Review: Biofuel production from plant and algal biomass.
International Journal of Hydrogen Energy. 41 (2016), 17257-17273.
[18] H.S. Heo, H.J. Park, J.-I. Dong, S.H. Park, S. Kim, D.J. Suh, et al. Fast pyrolysis of rice
husk under different reaction conditions. Journal of Industrial and Engineering
Chemistry. 16 (2010), 27–31.
[19] A.W. Weimer. Fluidized Bed Reactor Processes. Carbide, Nitride and Boride Materials
Synthesis and Processing. (1997), 169–180.
[20] A. Bridgwater. Review of fast pyrolysis of biomass and product upgrading. Biomass and
Bioenergy. 38 (2012), 68–94.
79
[21] S.A. Arni. Comparison of slow and fast pyrolysis for converting biomass into fuel.
Renewable Energy. (2017).
[22] Y. Xue, S. Zhou, R.C. Brown, A. Kelkar, X. Bai. Fast pyrolysis of biomass and waste
plastic in a fluidized bed reactor. Fuel. 156 (2015), 40–46.
[23] V. Dhyani, T. Bhaskar. A comprehensive review on the pyrolysis of lignocellulosic biomass.
Renewable Energy. (2017).
[24] R. French, S. Czernik. Catalytic pyrolysis of biomass for biofuels production. Fuel
Processing Technology. 91 (2010), 25–32.
[25] H. Zhang, R. Xiao, H. Huang, G. Xiao. Comparison of non-catalytic and catalytic fast
pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology. 100
(2009), 1428–1434.
[26] K. Wang, P.A. Johnston, R.C. Brown. Comparison of in-situ and ex-situ catalytic pyrolysis
in a micro-reactor system. Bioresource Technology. 173 (2014), 124–131.
[27] C. Hu, R. Xiao, H. Zhang. Ex-situ catalytic fast pyrolysis of biomass over HZSM-5 in a
two-stage fluidized-bed/fixed-bed combination reactor. Bioresource Technology.
243 (2017), 1133–1140.
[28] S. Shao, H. Zhang, Y. Wang, R. Xiao, L. Heng, D. Shen. Catalytic Pyrolysis of Biomass-
Derived Compounds: Coking Kinetics and Formation Network. Energy & Fuels. 29
(2015), 1751–1757.
[29] S. Du, D.P. Gamliel, M.V. Giotto, J.A. Valla, G.M. Bollas. Coke formation of model
compounds relevant to pyrolysis bio-oil over ZSM-5. Applied Catalysis A: General.
513 (2016), 67–81.
[30] H.S. Fogler. Elements of chemical reaction engineering. Chemical Engineering Science.
42 (1987), 707–715.
[31] H. Zhang, Y. Wang, S. Shao, R. Xiao. An experimental and kinetic modeling study
including coke formation for catalytic pyrolysis of furfural. Combustion and Flame.
173 (2016), 258–265.
80
[32] Q. Xue, T. Heindel, R. Fox. A CFD model for biomass fast pyrolysis in fluidized-bed
reactors. Chemical Engineering Science. 66 (2011), 2440–2452.
[33] P. Mellin, Q. Zhang, E. Kantarelis, W. Yang. An Euler–Euler approach to modeling
biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase.
Applied Thermal Engineering. 58 (2013), 344–353.
[34] G. Froment, Modeling of catalyst deactivation, Applied Catalysis A: General. 212 (2001),
117–128.
[35] COMSOL Multiphysics 5.3. Documentations (2017)
[36] C. Crowe, M. Sommerfeld, and Y. Tsuji. Multiphase flows with droplets and particles.
CRC Press, Boca Raton. (1998).
[37] B.G.M. van Wachem, J.C. Schouten, C.M. van den Bleek, R. Krishna, and J.L. Sinclair.
Comparative analysis of CFD models of dense gas-solid systems. AIChE Journal.
47 (2001), 1035-1051.
[38] D. Gidaspow. Multiphase flow and fluidization. Academic Press, San Diego. (1994).
[39] C.Y. Wen and Y.H. Yu. Mechanics of fluidization. Chemical Engineering Progress
Symposium Series. 62 (1966), 100-110.
[40] S. Ergun. Fluid flow through packed columns. Chemical Engineering Progress. 48 (1952),
89-94.
[41] C. Jun, Z. Li, X. Hong, X. Yaohua. Numerical simulation of the carbon deposition effect
in tubular fixed bed methane reforming reactor over Ni-Catalyst. Acta Petrolei
Sinica. 32 (2016) 951-958
[42] A. Ma’Ruf, B. Pramudono, N. Aryanti. Lignin isolation process from rice husk by alkaline
hydrogen peroxide: Lignin and silica extracted. (2017). doi:10.1063/1.4978086.
指導教授 蕭述三 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明