博碩士論文 103329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.131.110.169
姓名 吳澍齊(Shu-Chi Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
(Hydrogenated TiO2 for Li-, Na-, and Mg/Li-ion battery electrodes)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將三種二氧化鈦晶相,anatase、bronzer及rutile氫處理成氫化二氧化鈦,並應用於鋰離子、鈉離子與鎂鋰雙離子電池,藉由氫化增進電極的導電度與電化學動力學性質,以提升電池性能。過往研究僅有將氫化應用於鋰離子電池,尚未有文獻報導應用於鈉離子與鎂鋰雙離子電池。
實驗結果發現氫化anatase較原材在鋰離子、鈉離子與鎂鋰雙離子電池效能皆大幅提升。在鋰離子電池方面,在16.8 mA/g (0.05 C) 低電流密度下可得264 mAh/g;在10 A/g (30 C) 高電流密度下仍有34 mAh/g,經500圈循環壽命測試維持率仍有74%。鈉離子電池方面,在大電流充放電下10 A/g 仍可維持達94 mAh/g,在循環壽命上也有非常優異表現,以500 mA/g 測試4300圈循環壽命維持率,其電容值仍有110 mAh/g。在鎂鋰雙離子電池方面,在8.4 mA/g (0.05 C) 低電流密度下可得240 mAh/g;而在1680 mA/g (10 C) 高電流密度下仍可得95 mAh/g,而在168 mA/g (1 C) 循環壽命測試下,200圈循環壽命維持率達83%。
效能提升原因可歸因於氫化後產生氧空缺,無序表面及Ti3+離子,氧空缺能提升材料導電性降低阻抗,無序表面能提供更多電化學反應活化點,而無序表面與Ti3+離子這兩者效應結合在氫化二氧化鈦表面產生擬電容儲存離子反應,能增進電化學動力學性質,提升其高速性能。然而bronze與rutile氫化後,僅在鈉離子電池上性能有所提升,鋰離子與鎂鋰雙離子電池則性能增益有限,推測可能與bronze氫化後產生相變,而rutile則是本身尺寸較大造成表面積少,因此氫化提升效能效益並不明顯。
結果顯示氫化處理不僅對於鋰離子電池有效,對於鈉離子及鎂鋰雙離子電池效能也能大幅提升。但仍需考量材料是否會產生相變及尺寸效應問題。希望此技術未來能拓展至其他種類金屬氧化物電極於鋰、鈉、鎂和鋁離子等二次金屬離子電池等應用。
摘要(英) Hydrogenated transition metal oxides (TMOs) prepared via a hydrogenation treatment process have attracted increasing attention as electrodes in lithium ion batteries and supercapacitors, which is attributed to the improved electronic conductivity and electrochemical reactions kinetics. In this work, three different TiO2 phases including anatase (TiO2-A), bronze (TiO2-B), and rutile (TiO2-R) and their hydrogenated products (denoted with a prefix “H”) are investigated as electrodes in Li-, Na-, and Mg/Li-ion battery. We demonstrate, for the first time, the effects of hydrogenation treatment on electrochemical performances of TiO2 in Na- and Mg/Li-ion battery.
Our experimental results shows that hydrogenation treatment improves the capacity of anatase TiO2 in MLIBs up to 240 mAh/g (at 8.4 mA/g), which is 2 times higher than the raw TiO2. Furthermore, the high rate capabilities of anatase TiO2 (HTiO2-A) in LIBs (34 mAh/g at 10A/g), NIBs (94 mAh/g at 10A/g), and MLIBs (95 mAh/g at 1.68A/g) are enhanced as compared to the raw TiO2-A. Regarding the cycle stabilities of HTiO2-A, 74% capacity is retained after 500 cycles for LIBs, while 60% after 4300 cycles for NIBs and 83% after 200 cycles for MLIBs. All these results indicate the significant benefits of hydrogenation treatment on the anatase TiO2.
The enhanced performances might be explained by oxygen vacancies, disordered surface and Ti3+ ions created by hydrogenation process. The introduction of oxygen vacancies improves the electronic conductivity of materials, while the disordered surface may provide more active sites for electrochemical reactions. The combined effects of the disordered surface and Ti3+ induce pseudocapacitive lithium storage on the HTiO2 surface, which features much faster kinetics. However, hydrogenation treatment improves the electrochemical performances of the bronze and rutile phases only for NIBs, which is possibly attributed to phase transformation of the bronze phase and the larger particle size of the rutile phase.
Conclusively, hydrogenation treatment enhances electrochemical performances of transition metal oxides not only in LIBs but also in SIBs and MLIBs although the simultaneous phase transformation and particle size are needed to be concerned. In the future, the developed hydrogenation technique potentially extends to a variety of metal oxide electrodes in lithium, sodium, magnesium, and aluminum ion battery applications.
The experimental results show that the enhanced effect of hydrogenated treatment on transition metal oxides not only in lithium ion batteries but also in sodium ion battery and magnesium-lithium ion battery. Therefore, the developed hydrogenation technique potentially extends to a variety of metal oxide electrodes in lithium, sodium, magnesium, and aluminum ion battery applications.
關鍵字(中) ★ 氫處理
★ 二氧化鈦
★ 鋰離子電池
★ 鈉離子電池
★ 鎂離子電池
★ 雙鹽系統
關鍵字(英) ★ hydrogenation
★ titanium oxide
★ lithium ion batteries
★ sodium ion batteries
★ magnesium ion batteries
★ dual ion system
論文目次 摘要 I
Abstract III
目錄 VI
一、 緒論 1
二、 文獻回顧 2
2-1 金屬離子電池 2
2-1-1 鋰離子電池 2
2-1-2 鈉離子電池 3
2-1-3 鎂離子電池 7
2-1-4 雙鹽系統之鎂離子電池(鎂鋰雙離子電池) 9
2-2 二氧化鈦應於金屬離子電池 13
2-2-1 二氧化鈦應用於鋰離子電池負極材料 13
2-2-2 二氧化鈦應用於鈉離子電池負極材料 20
2-2-3 二氧化鈦應用於鎂鋰雙離子電池正極材料 26
2-3 氫化金屬氧化物簡介 27
2-4 氫化金屬氧化物在鋰離子電池應用 29
2-5 氫化二氧化鈦特性鑑定 32
2-5-1 表面無序結構鑑定 32
2-5-2 氧空缺鑑定 33
2-5-3 Ti3+離子鑑定 33
2-5-4 Ti-OH 鍵結鑑定 34
2-5-5 Ti-H 鍵結鑑定 34
2-6 氧空缺改質鋰離子電池與鈉離子電池 40
三、 實驗方法及步驟 41
3-1 活性物質製備 41
3-1-1 TiO2及H-TiO2之製備 41
3-1-2 電解液之調配 42
3-1-3 電極製作與鈕扣型電池封裝 42
3-2 材料特性鑑定 44
3-2-1 TiO2及H-TiO2之形貌分析 44
3-2-2 TiO2及H-TiO2晶體結構分析 44
3-2-3 TiO2及H-TiO2缺陷結構鑑定 44
3-3 電化學測試 46
3-3-1 循環伏安法 (Cyclic voltammetry, CV) 46
3-3-2 計時電位法 (Chronopotentimetry, CP) 46
3-3-3 交流阻抗法 (electrochemical impedance spectroscopy, EIS) 47
四、 結果與討論 49
4-1 TiO2及H-TiO2材料分析 49
4-1-1 材料外觀照片 49
4-1-2 材料結晶結構分析 49
4-1-3 材料形貌分析 50
4-1-4 拉曼光譜分析 51
4-1-5 X光電子能譜分析 51
4-1-6 X光吸收光譜分析 52
4-2 TiO2及H-TiO2之鋰離子電池分析 60
4-2-1 交流阻抗分析 60
4-2-2 定電流充放電分析 60
4-2-3 循環壽命分析 62
4-2-4 TiO2及H-TiO2之鋰離子電池之反應機構探討 62
4-3 TiO2及H-TiO2之鈉離子電池分析 70
4-3-1 交流阻抗分析 70
4-3-2 循環伏安分析 70
4-3-3 定電流充放電分析 71
4-3-4 循環壽命分析 73
4-3-5 TiO2及H-TiO2之鈉離子電池之反應機構探討 74
4-4 TiO2及H-TiO2之鎂鋰雙離子電池分析 83
4-4-1 表面形貌分析 83
4-4-2 鎂化鑑定 83
4-4-3 交流阻抗分析 84
4-4-4 循環伏安分析 84
4-4-5 定電流充放電分析 85
4-4-6 循環壽命分析 87
4-4-7 TiO2及H-TiO2之鎂鋰雙離子電池之反應機構探討 88
五、 結論 99
參考文獻 101
參考文獻 1. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 2013, 113, 5364-5457.
2. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chemical reviews 2014, 114, 11636-11682.
3. Su, S.; Huang, Z.; NuLi, Y.; Tuerxun, F.; Yang, J.; Wang, J. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chemical communications 2015, 51, 2641-2644.
4. Su, S.; NuLi, Y.; Huang, Z.; Miao, Q.; Yang, J.; Wang, J. A High-Performance Rechargeable Mg2+/Li+ Hybrid Battery Using One-Dimensional Mesoporous TiO2 (B) Nanoflakes as the Cathode. ACS applied materials & interfaces 2016, 8, 7111-7117.
5. Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109-118.
6. Jiang, L.; Lu, X.; Xie, C.; Wan, G.; Zhang, H.; Youhong, T. Flexible, free-standing TiO2–graphene–polypyrrole composite films as electrodes for supercapacitors. The Journal of Physical Chemistry C 2015, 119, 3903-3910.
7. Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.; Kamino, T. New generation “nanohybrid supercapacitor”. Accounts of chemical research 2012, 46, 1075-1083.
8. Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society reviews 2015, 44, 1861-1885.
9. Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy & Environmental Science 2013, 6, 2609.
10. Delmas, C.; Braconnier, J.-J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3, 165-169.
11. Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J. B. A Superior Low‐Cost Cathode for a Na‐Ion Battery. Angewandte Chemie International Edition 2013, 52, 1964-1967.
12. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1, 16013-16023.
13. D. Aurbach, Z. L., A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich & E. Levi. Nature-Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724-727.
14. Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A.; Scrosati, B.: Encyclopedia of electrochemical power sources; Newnes, 2013.
15. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society reviews 2015, 44, 2060-2086.
16. Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. Journal of The Electrochemical Society 2008, 155, A103-A109.
17. Cho, J. H.; Aykol, M.; Kim, S.; Ha, J. H.; Wolverton, C.; Chung, K. Y.; Kim, K. B.; Cho, B. W. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. Journal of the American Chemical Society 2014, 136, 16116-16119.
18. Gofer, Y.; Chusid, O.; Gizbar, H.; Viestfrid, Y.; Gottlieb, H. E.; Marks, V.; Aurbach, D. Improved Electrolyte Solutions for Rechargeable Magnesium Batteries. Electrochemical and Solid-State Letters 2006, 9, A257-A260.
19. Shao, Y.; Liu, T.; Li, G.; Gu, M.; Nie, Z.; Engelhard, M.; Xiao, J.; Lv, D.; Wang, C.; Zhang, J. G.; Liu, J. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Scientific reports 2013, 3, 3130.
20. Gao, T.; Han, F.; Zhu, Y.; Suo, L.; Luo, C.; Xu, K.; Wang, C. Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials 2015, 5.
21. Yoo, H. D.; Liang, Y.; Li, Y.; Yao, Y. High Areal Capacity Hybrid Magnesium–Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage. ACS applied materials & interfaces 2015, 7, 7001-7007.
22. Yagi, S.; Ichitsubo, T.; Shirai, Y.; Yanai, S.; Doi, T.; Murase, K.; Matsubara, E. A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A 2014, 2, 1144-1149.
23. Nelson, E. G.; Brody, S. I.; Kampf, J. W.; Bartlett, B. M. A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. Journal of Materials Chemistry A 2014, 2, 18194-18198.
24. Wu, N.; Yang, Z. Z.; Yao, H. R.; Yin, Y. X.; Gu, L.; Guo, Y. G. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angewandte Chemie 2015, 54, 5757-5761.
25. Zhang, Y.; Xie, J.; Han, Y.; Li, C. Dual‐Salt Mg‐Based Batteries with Conversion Cathodes. Advanced Functional Materials 2015, 25, 7300-7308.
26. Wagemaker, M.; Kentgens, A.; Mulder, F. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 2002, 418, 397-399.
27. Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. Journal of Power Sources 2009, 192, 588-598.
28. Kubiak, P.; Pfanzelt, M.; Geserick, J.; Hörmann, U.; Hüsing, N.; Kaiser, U.; Wohlfahrt-Mehrens, M. Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries. Journal of Power Sources 2009, 194, 1099-1104.
29. Marinaro, M.; Pfanzelt, M.; Kubiak, P.; Marassi, R.; Wohlfahrt-Mehrens, M. Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. Journal of Power Sources 2011, 196, 9825-9829.
30. Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. TiO2 rutile—an alternative anode material for safe lithium-ion batteries. Journal of Power Sources 2011, 196, 6815-6821.
31. Pfanzelt, M.; Kubiak, P.; Wohlfahrt-Mehrens, M. Nanosized TiO2 rutile with high capacity and excellent rate capability. Electrochemical and Solid-State Letters 2010, 13, A91-A94.
32. Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. The Journal of Physical Chemistry Letters 2011, 2, 2560-2565.
33. Wu, L.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles. Advanced Energy Materials 2014, 1401142
34. Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. Electrochemical sodium storage of TiO2 (B) nanotubes for sodium ion batteries. RSC Advances 2013, 3, 12593-12597.
35. Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature communications 2015, 6:6929.
36. Usui, H.; Yoshioka, S.; Wasada, K.; Shimizu, M.; Sakaguchi, H. Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS applied materials & interfaces 2015, 7, 6567-6573.
37. Li, J.; Wang, Z.; Zhao, A.; Wang, J.; Song, Y.; Sham, T.-K. Nanoscale Clarification of the Electronic Structure and Optical Properties of TiO2 Nanowire with an Impurity Phase upon Sodium Intercalation. The Journal of Physical Chemistry C 2015, 119, 17848-17856.
38. Xu, Y.; Lotfabad, E. M.; Wang, H.; Farbod, B.; Xu, Z.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chemical communications 2013, 49, 8973-8975.
39. Bi, Z.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M.; Guo, B.; Sun, X.-G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources 2013, 222, 461-466.
40. Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano letters 2014, 14, 416-422.
41. Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS applied materials & interfaces 2014, 6, 11295-11301.
42. Liu, H.; Cao, K.; Xu, X.; Jiao, L.; Wang, Y.; Yuan, H. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. ACS applied materials & interfaces 2015, 7, 11239-11245.
43. Xu, Y.; Zhou, M.; Wen, L.; Wang, C.; Zhao, H.; Mi, Y.; Liang, L.; Fu, Q.; Wu, M.; Lei, Y. Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes. Chemistry of Materials 2015, 27, 4274-4280.
44. Su, D.; Dou, S.; Wang, G. Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries. Chemistry of Materials 2015, 27, 6022-6029.
45. Yang, Y.; Ji, X.; Jing, M.; Hou, H.; Zhu, Y.; Fang, L.; Yang, X.; Chen, Q.; Banks, C. E. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 2015, 3, 5648-5655.
46. Yeo, Y.; Jung, J. W.; Park, K.; Kim, I. D. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries. Scientific reports 2015, 5, 13862.
47. Hong, Z.; Zhou, K.; Huang, Z.; Wei, M. Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific reports 2015, 5, 11960.
48. Fu, C.; Chen, T.; Qin, W.; Lu, T.; Sun, Z.; Xie, X.; Pan, L. Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 2015, 22, 555-562.
49. Wu, L.; Moretti, A.; Buchholz, D.; Passerini, S.; Bresser, D. Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochimica Acta 2016, 203, 109-116.
50. Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthofer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary Performance of Carbon-Coated Anatase TiO2 as Sodium-Ion Anode. Adv Energy Mater 2016, 6, 1501489.
51. Chen, J.; Ding, Z.; Wang, C.; Hou, H.; Zhang, Y.; Wang, C.; Zou, G.; Ji, X. Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. ACS applied materials & interfaces 2016, 8, 9142-9151.
52. Wu, L.; Bresser, D.; Buchholz, D.; Passerini, S. Nanocrystalline TiO2 (B) as Anode Material for Sodium-Ion Batteries. Journal of the Electrochemical Society 2014, 162, A3052-A3058.
53. Søndergaard, M.; Dalgaard, K. J.; Bøjesen, E. D.; Wonsyld, K.; Dahl, S.; Iversen, B. B. In situ monitoring of TiO2(B)/anatase nanoparticle formation and application in Li-ion and Na-ion batteries. J. Mater. Chem. A 2015, 3, 18667-18674.
54. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746-750.
55. Lu, J.; Dai, Y.; Jin, H.; Huang, B. Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. Physical chemistry chemical physics : PCCP 2011, 13, 18063-18068.
56. Lu, X.; Wang, G.; Xie, S.; Shi, J.; Li, W.; Tong, Y.; Li, Y. Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chemical communications 2012, 48, 7717-7719.
57. Wang, G.; Ling, Y.; Lu, X.; Qian, F.; Tong, Y.; Zhang, J. Z.; Lordi, V.; Rocha Leao, C.; Li, Y. Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. The Journal of Physical Chemistry C 2013, 117, 10957-10964.
58. Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Muller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14, 3309-3313.
59. Meng, M.; Wu, X.; Zhu, X.; Zhu, X.; Chu, P. K. Facet cutting and hydrogenation of In2O3 nanowires for enhanced photoelectrochemical water splitting. ACS applied materials & interfaces 2014, 6, 4081-4088.
60. Mettenbörger, A.; Singh, T.; Singh, A. P.; Järvi, T. T.; Moseler, M.; Valldor, M.; Mathur, S. Plasma-chemical reduction of iron oxide photoanodes for efficient solar hydrogen production. International Journal of Hydrogen Energy 2014, 39, 4828-4835.
61. Yang, C.; Zhu, Q.; Lei, T.; Li, H.; Xie, C. The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films. J. Mater. Chem. C 2014, 2, 9467-9477.
62. Zeng, L.; Song, W.; Li, M.; Zeng, D.; Xie, C. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Applied Catalysis B: Environmental 2014, 147, 490-498.
63. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature communications 2015, 6, 8064.
64. Zhang, T.; Cheng, F.; Du, J.; Hu, Y.; Chen, J. Efficiently Enhancing Oxygen Reduction Electrocatalytic Activity of MnO2 Using Facile Hydrogenation. Advanced Energy Materials 2015, 5, 1400654.
65. Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano letters 2012, 12, 1690-1696.
66. Pan, X.; Zhao, Y.; Ren, G.; Fan, Z. Highly conductive VO2 treated with hydrogen for supercapacitors. Chemical communications 2013, 49, 3943-3945.
67. Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS nano 2013, 7, 2617-2626.
68. Singh, A. K.; Sarkar, D.; Khan, G. G.; Mandal, K. Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. ACS applied materials & interfaces 2014, 6, 4684-4692.
69. Wang, F.; Li, Y.; Cheng, Z.; Xu, K.; Zhan, X.; Wang, Z.; He, J. Construction of 3D V2O5/hydrogenated-WO3 nanotrees on tungsten foil for high-performance pseudocapacitors. Physical chemistry chemical physics : PCCP 2014, 16, 12214-12220.
70. Zhu, J.; Huang, L.; Xiao, Y.; Shen, L.; Chen, Q.; Shi, W. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors. Nanoscale 2014, 6, 6772-6781.
71. Li, G.; Zhang, Z.; Peng, H.; Chen, K. Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Advances 2013, 3, 11507.
72. Liu, Y.; Liu, C.; Li, J. Flexible free-standing hydrogen-treated titanium dioxide nanowire arrays as a high performance anode for lithium ion batteries. J. Mater. Chem. A 2014, 2, 15746-15751.
73. Lu, Z.; Yip, C.-T.; Wang, L.; Huang, H.; Zhou, L. Hydrogenated TiO2 Nanotube Arrays as High-Rate Anodes for Lithium-Ion Microbatteries. ChemPlusChem 2012, 77, 991-1000.
74. Qiu, J.; Li, S.; Gray, E.; Liu, H.; Gu, Q.-F.; Sun, C.; Lai, C.; Zhao, H.; Zhang, S. Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C 2014, 118, 8824-8830.
75. Shin, J.-Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries. Chemistry of Materials 2012, 24, 543-551.
76. Wang, J.; Shen, L.; Nie, P.; Xu, G.; Ding, B.; Fang, S.; Dou, H.; Zhang, X. Synthesis of hydrogenated TiO2–reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A 2014, 2, 9150-9155.
77. Wang, N.; Yue, J.; Chen, L.; Qian, Y.; Yang, J. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS applied materials & interfaces 2015, 7, 10348-10355.
78. Xia, T.; Zhang, W.; Li, W.; Oyler, N. A.; Liu, G.; Chen, X. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826-835.
79. Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano letters 2013, 13, 5289-5296.
80. Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109-118.
81. Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A 2013, 1, 14507-14513.
82. Zhang, Z.; Zhou, Z.; Nie, S.; Wang, H.; Peng, H.; Li, G.; Chen, K. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. Journal of Power Sources 2014, 267, 388-393.
83. Zheng, J.; Liu, Y.; Ji, G.; Zhang, P.; Cao, X.; Wang, B.; Zhang, C.; Zhou, X.; Zhu, Y.; Shi, D. Hydrogenated Oxygen-Deficient Blue Anatase as Anode for High-Performance Lithium Batteries. ACS applied materials & interfaces 2015, 7, 23431-23438.
84. Peng, X.; Zhang, X.; Wang, L.; Hu, L.; Cheng, S. H.-S.; Huang, C.; Gao, B.; Ma, F.; Huo, K.; Chu, P. K. Hydrogenated V2O5 Nanosheets for Superior Lithium Storage Properties. Advanced Functional Materials 2016, 26, 784-791.
85. Qiu, J.; Lai, C.; Gray, E.; Li, S.; Qiu, S.; Strounina, E.; Sun, C.; Zhao, H.; Zhang, S. Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A 2014, 2, 6353-6358.
86. Liu, L.; Sun, L.; Liu, J.; Xiao, X.; Hu, Z.; Cao, X.; Wang, B.; Liu, X. Enhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modification. International Journal of Hydrogen Energy 2014, 39, 11258-11266.
87. Xiao, X.; Peng, Z.; Chen, C.; Zhang, C.; Beidaghi, M.; Yang, Z.; Wu, N.; Huang, Y.; Miao, L.; Gogotsi, Y.; Zhou, J. Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 2014, 9, 355-363.
88. Byeon, A.; Boota, M.; Beidaghi, M.; Aken, K. V.; Lee, J. W.; Gogotsi, Y. Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochemistry Communications 2015, 60, 199-203.
89. Yuan, C.; Zhu, S.; Cao, H.; Hou, L.; Lin, J. Hierarchical sulfur-impregnated hydrogenated TiO2 mesoporous spheres comprising anatase nanosheets with highly exposed (001) facets for advanced Li-S batteries. Nanotechnology 2016, 27, 045403.
90. Zhang, C.; Yu, H.; Li, Y.; Gao, Y.; Zhao, Y.; Song, W.; Shao, Z.; Yi, B. Supported Noble Metals on Hydrogen‐Treated TiO2 Nanotube Arrays as Highly Ordered Electrodes for Fuel Cells. ChemSusChem 2013, 6, 659-666.
91. Zhu, W. D.; Wang, C. W.; Chen, J. B.; Li, D. S.; Zhou, F.; Zhang, H. L. Enhanced field emission from hydrogenated TiO2 nanotube arrays. Nanotechnology 2012, 23, 455204.
92. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. Journal of Materials Research 2014, 29, 2198-2210.
93. Su, T.; Yang, Y.; Na, Y.; Fan, R.; Li, L.; Wei, L.; Yang, B.; Cao, W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS applied materials & interfaces 2015, 7, 3754-3763.
94. Balogun, M. S.; Zhu, Y.; Qiu, W.; Luo, Y.; Huang, Y.; Liang, C.; Lu, X.; Tong, Y. Chemically Lithiated TiO2 Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS applied materials & interfaces 2015, 7, 25991-26003.
95. Chen, X.; Liu, L.; Liu, Z.; Marcus, M. A.; Wang, W.-C.; Oyler, N. A.; Grass, M. E.; Mao, B.; Glans, P.-A.; Peter, Y. Y. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Scientific reports 2013, 3:1510.
96. Xia, T.; Chen, X. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. Journal of Materials Chemistry A 2013, 1, 2983-2989.
97. Sun, C.; Jia, Y.; Yang, X.-H.; Yang, H.-G.; Yao, X.; Lu, G. Q.; Selloni, A.; Smith, S. C. Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. The Journal of Physical Chemistry C 2011, 115, 25590-25594.
98. Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Müller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14, 3309-3313.
99. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano letters 2011, 11, 3026-3033.
100. Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials 2013, 23, 5444-5450.
101. Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; Zhu, Y.; Liu, Z.; Meng, Y. S. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nature communications 2016, 7, 12108.
102. Xu, Y.; Zhou, M.; Wang, X.; Wang, C.; Liang, L.; Grote, F.; Wu, M.; Mi, Y.; Lei, Y. Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. Angewandte Chemie 2015, 54, 8768-8771.
103. Chen, C. L.; Dong, C. L.; Chen, C. H.; Wu, J. W.; Lu, Y. R.; Lin, C. J.; Liou, S. Y.; Tseng, C. M.; Kumar, K.; Wei, D. H.; Guo, J.; Chou, W. C.; Wu, M. K. Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Physical chemistry chemical physics : PCCP 2015, 17, 22064-22071.
104. Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. Journal of Materials Chemistry A 2013, 1, 2653-2662.
105. Li, S.; Qiu, J.; Lai, C.; Ling, M.; Zhao, H.; Zhang, S. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224-230.
106. Mohtadi, R.; Matsui, M.; Arthur, T. S.; Hwang, S. J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angewandte Chemie International Edition 2012, 51, 9780-9783.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2016-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明