博碩士論文 103329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:18.190.217.134
姓名 陳侹浩(Ting-Hao Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
(The effect on supercapacitor property by particle size and functional group of activated carbon combine with different electrolyte composition)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 「電極材料」和「電解液」都對於超高電容器的性能具有一定程度的影響,因此本研究將針對此兩大部分進行影響電化學性質的效應探討,了解其分別在超高電容儲能方面扮演的角色。

在第一部分,我們選用活性碳作為電極材料,分別針對其粒徑尺寸及表面官能基的含量進行控制,期望去尋找一個能夠在電極塗佈性、電極阻抗、電極穩定性之間取得平衡的最適化條件。

在第二部分,我們選用了各種不同的電解液,包含氧化還原活化電解液(redox-active electrolyte),以及具有不同陽離子大小的電解液。在添加TEAI後的電解液中,其能夠透過離子進行氧化還原反應提供額外的擬電容值,但其庫侖效率與循環穩定性不佳,將不做深入的探討。於是,我們從另一方面去改善電容性能,透過改變電解液中陽離子的大小,使其更容易進入電極材料的微孔內,藉此來提高電容值,我們亦搭配不同孔洞結構的材料,對於其與電解液離子尺寸的關係做系統性的探討。
摘要(英) "Electrode Materials" and "Electrolyte" have a certain degree of influence on the performance of supercapacitor. Therefore, this study will discuss the effect of these two parts on the electrochemical properties of supercapacitor.

In the first part, we use activated carbon as the electrode material. By control its particle size and surface functional groups respectively, hoping to find a balance conditions between the coating, resistance and stability of electrode. First, we grind the activated carbon into different particle size to find the conditions that can achieve optimum capacitance properties.

In the second part, we selected a variety of different electrolytes, including a redox-active electrolyte, and electrolytes with different cation sizes. In the electrolyte after adding TEAI, it can provide an additional pseudocapacitance by the redox reaction of ions, but its coulombic efficiency and cycle stability are poor, and will not be discussed in detail. On the other hand, we improve the capacitance performance by changing the cation size of electrolyte, making it easier to enter the pores of the electrode material, thereby increasing the capacitance. We also use the material with different pore structure, to do a systematic discussion of its relationship to the ion size of the electrolyte.
關鍵字(中) ★ 超高電容
★ 粒徑尺寸
★ 官能基
★ 離子尺寸
★ 孔洞尺寸
關鍵字(英) ★ supercapacitor
★ particle size
★ functional group
★ ion size
★ pore size
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xii
一、 前言 1
二、 文獻回顧 3
2-1 超高電容器簡介 3
2-1-1 電雙層電容器 (electric double-layer capacitors) 3
2-1-2 擬電容器 (pseudo-capacitors) 4
2-2 影響電雙層電容器電容值的因素 7
2-3 活性碳材料特性對電容性質的影 8
2-3-1 活性碳粒徑大小 8
2-3-2 表面官能基含量 10
2-3-3 孔洞尺寸分布 14
2-4 超高電容器電解質對電容性質的影響 20
2-4-1 氧化還原活化電解質 22
2-4-2 陽離子尺寸大小 27
三、 實驗步驟 35
3-1 電極材料之準備 35
3-1-1 減少活性碳粒徑尺寸 35
3-1-2 去除表面官能基 35
3-1-3 商用活性碳之取得 36
3-2 材料特性分析 37
3-2-1 鑑定表面官能基含量 37
3-2-2 電極表面形貌觀察及元素分析 37
3-2-3 比表面積及孔洞分布的量測 37
3-3 電解液之製備 38
3-3-1 氧化還原活化電解質的添加 38
3-3-2 不同陽離子尺寸大小電解液的配製 38
3-4 活性碳於有機電解液中電化學性質之評估 40
3-4-1 電極之製備 40
3-4-2 電極片孔隙率的量測 40
3-4-3 鈕扣電池之組裝 40
3-4-4 電化學性質之評估 41
四、 結果與討論 43
4-1 活性碳電極的不同效應探討 43
4-1-1 研磨後活性碳材料性質分析 43
4-1-2 不同粒徑尺寸活性碳的電極特性 43
4-1-3 不同粒徑尺寸活性碳的電化學穩定性 44
4-1-4 氮氣熱處理後之活性碳材料性質分析 45
4-1-5 不同溫度氮氣熱處理之活性碳的電極特性 45
4-1-6 不同溫度氮氣熱處理之活性碳的電化學穩定性 46
4-1-7 高溫老化測試後材料特性分析 47
4-2 活性碳於不同電解液的效應探討 69
4-2-1 氧化還原活化電解質的效應 69
4-2-2 陽離子尺寸大小的效應 74
4-2-3 不同活性碳孔洞結構的影響 75
4-2-4 電解液陽離子大小對於中孔材料電容性質的影響 84
4-2-5 電解液陽離子大小對於微孔材料電容性質的影響 87
4-2-6 電解液陽離子大小對於循環穩定性的影響 90
五、 結論 110
參考文獻 112
參考文獻
1. Burke A., Ultracapacitors: why, how, and where is the technology. Journal of power sources, 2000. 91: p. 37-50.
2. Yan J., Q. Wang, T. Wei, and Z. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014. 4: p. 1300816.
3. Simon P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7: p. 845-854.
4. Zhong C., Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015. 44: p. 7484-7539.
5. Lim E., C. Jo, and J. Lee, A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale, 2016. 8: p. 7827-7833.
6. Hu C.-C., K.-H. Chang, M.-C. Lin, and Y.-T. Wu, Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Letters, 2006. 6: p. 2690-2695.
7. Portet C., G. Yushin, and Y. Gogotsi, Effect of Carbon Particle Size on Electrochemical Performance of EDLC. Journal of The Electrochemical Society, 2008. 155: p. A531.
8. Lei Z., N. Christov, L. L. Zhang, and X. S. Zhao, Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J. Mater. Chem., 2011. 21: p. 2274-2281.
9. Huang C.-W., C.-T. Hsieh, P.-L. Kuo, and H. Teng, Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. Journal of Materials Chemistry, 2012. 22: p. 7314.

10. Zhao Y., M. Liu, L. Gan, X. Ma, D. Zhu, Z. Xu, and L. Chen, Ultramicroporous Carbon Nanoparticles for the High-Performance Electrical Double-Layer Capacitor Electrode. Energy & Fuels, 2014. 28: p. 1561-1568.
11. Rennie A. J., V. L. Martins, R. M. Smith, and P. J. Hall, Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors. Sci Rep, 2016. 6: p. 22062.
12. Yang R., R. Zou, and A. Yu, Computer simulation of the packing of fine particles. Physical review E, 2000. 62: p. 3900.
13. Yu A., J. Bridgwater, and A. Burbidge, On the modelling of the packing of fine particles. Powder technology, 1997. 92: p. 185-194.
14. Lozano-Castelló D., D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, and A. Oya, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon, 2003. 41: p. 1765-1775.
15. Shen W., Z. Li, and Y. Liu, Surface chemical functional groups modification of porous carbon. Recent Patents on Chemical Engineering, 2008. 1: p. 27-40.
16. Kötz R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 2000. 45: p. 2483-2498.
17. Sarangapani S., B. V. Tilak, and C. P. Chen, Materials for Electrochemical Capacitors: Theoretical and Experimental Constraints. Journal of The Electrochemical Society, 1996. 143: p. 3791-3799.
18. Figueiredo J., M. Pereira, M. Freitas, and J. Orfao, Modification of the surface chemistry of activated carbons. carbon, 1999. 37: p. 1379-1389.
19. Wang H., A. Zhou, F. Peng, H. Yu, and J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J Colloid Interface Sci, 2007. 316: p. 277-283.

20. Li M., M. Boggs, T. P. Beebe, and C. P. Huang, Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon, 2008. 46: p. 466-475.
21. Kovtyukhova N. I., T. E. Mallouk, L. Pan, and E. C. Dickey, Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes. Journal of the American Chemical Society, 2003. 125: p. 9761-9769.
22. Luong J. H. T., S. Hrapovic, Y. Liu, D.-Q. Yang, E. Sacher, D. Wang, C. T. Kingston, and G. D. Enright, Oxidation, Deformation, and Destruction of Carbon Nanotubes in Aqueous Ceric Sulfate. The Journal of Physical Chemistry B, 2005. 109: p. 1400-1407.
23. Kötz R., P. W. Ruch, and D. Cericola, Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. Journal of Power Sources, 2010. 195: p. 923-928.
24. Ruch P. W., D. Cericola, A. Foelske-Schmitz, R. Kötz, and A. Wokaun, Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages. Electrochimica Acta, 2010. 55: p. 4412-4420.
25. Ruch P. W., D. Cericola, A. Foelske, R. Kötz, and A. Wokaun, A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochimica Acta, 2010. 55: p. 2352-2357.
26. Tokita M., N. Yoshimoto, K. Fujii, and M. Morita, Degradation Characteristics of Electric Double-Layer Capacitors Consisting of High Surface Area Carbon Electrodes with Organic Electrolyte Solutions. Electrochimica Acta, 2016. 209: p. 210-218.
27. Azaïs P., L. Duclaux, P. Florian, D. Massiot, M.-A. Lillo-Rodenas, A. Linares-Solano, J.-P. Peres, C. Jehoulet, and F. Béguin, Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources, 2007. 171: p. 1046-1053.
28. Kurzweil P. and M. Chwistek, Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products. Journal of Power Sources, 2008. 176: p. 555-567.
29. Ishimoto S., Y. Asakawa, M. Shinya, and K. Naoi, Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors. Journal of The Electrochemical Society, 2009. 156: p. A563.
30. AS D., K. MH, and M. LR., Optimization of the Process Parameters for the Preparation
of Activated Carbon from Low Cost Phoenix Dactylifera Using Response Surface Methodology. Austin Chem Eng., 2015. 2: p. 1021.
31. Chmiola J., G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006. 313: p. 1760-1763.
32. Barbieri O., M. Hahn, A. Herzog, and R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005. 43: p. 1303-1310.
33. Weng T.-C. and H. Teng, Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors. Journal of The Electrochemical Society, 2001. 148: p. A368.
34. Kim Y. J., Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, N. Miyashita, and M. Endo, Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon, 2004. 42: p. 1491-1500.
35. Yang C.-M., Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, and K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. Journal of the American Chemical Society, 2007. 129: p. 20-21.

36. Jiang D. E. and J. Wu, Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. J Phys Chem Lett, 2013. 4: p. 1260-1267.
37. Yang C.-M., Y.-J. Kim, J. Miyawaki, Y. A. Kim, M. Yudasaka, S. Iijima, and K. Kaneko, Effect of the Size and Position of Ion-Accessible Nanoholes on the Specific Capacitance of Single-Walled Carbon Nanohorns for Supercapacitor Applications. The Journal of Physical Chemistry C, 2015. 119: p. 2935-2940.
38. Huang J., B. G. Sumpter, and V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry, 2008. 14: p. 6614-6626.
39. Huang J., B. G. Sumpter, and V. Meunier, Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed Engl, 2008. 47: p. 520-524.
40. Ania C. O., J. Pernak, F. Stefaniak, E. Raymundo-Piñero, and F. Béguin, Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon, 2009. 47: p. 3158-3166.
41. Hsieh W., T.-L. A. Horng, H.-C. Huang, and H. Teng, Facile simulation of carbon with wide pore size distribution for electric double-layer capacitance based on Helmholtz models. J. Mater. Chem. A, 2015. 3: p. 16535-16543.
42. Chmiola J., G. Yushin, R. Dash, and Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources, 2006. 158: p. 765-772.
43. Feng G. and P. T. Cummings, Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size. The Journal of Physical Chemistry Letters, 2011. 2: p. 2859-2864.
44. Wu P., J. Huang, V. Meunier, B. G. Sumpter, and R. Qiao, Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores. ACS Nano, 2011. 5: p. 9044-9051.
45. Centeno T. A. and F. Stoeckli, The volumetric capacitance of microporous carbons in organic electrolyte. Electrochemistry Communications, 2012. 16: p. 34-36.
46. Stoeckli F. and T. A. Centeno, Pore size distribution and capacitance in microporous carbons. Phys Chem Chem Phys, 2012. 14: p. 11589-11591.
47. Garcia-Gomez A., G. Moreno-Fernandez, B. Lobato, and T. A. Centeno, Constant capacitance in nanopores of carbon monoliths. Phys Chem Chem Phys, 2015. 17: p. 15687-15690.
48. Chmiola J., C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory. Angewandte Chemie, 2008. 120: p. 3440-3443.
49. Largeot C., C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, and P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 2008. 130: p. 2730-2731.
50. Lin R., P. Huang, J. Ségalini, C. Largeot, P. L. Taberna, J. Chmiola, Y. Gogotsi, and P. Simon, Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochimica Acta, 2009. 54: p. 7025-7032.
51. Segalini J., E. Iwama, P.-L. Taberna, Y. Gogotsi, and P. Simon, Steric effects in adsorption of ions from mixed electrolytes into microporous carbon. Electrochemistry Communications, 2012. 15: p. 63-65.
52. Huang H.-C., C.-W. Huang, C.-T. Hsieh, and H. Teng, Electric double layer capacitors of high volumetric energy based on ionic liquids and hierarchical-pore carbon. Journal of Materials Chemistry A, 2014. 2: p. 14963.
53. Pohlmann S., R.-S. Kühnel, T. A. Centeno, and A. Balducci, The Influence of Anion-Cation Combinations on the Physicochemical Properties of Advanced Electrolytes for Supercapacitors and the Capacitance of Activated Carbons. ChemElectroChem, 2014. 1: p. 1301-1311.
54. Lota G. and E. Frackowiak, Striking capacitance of carbon/iodide interface. Electrochemistry Communications, 2009. 11: p. 87-90.
55. Lota G., K. Fic, and E. Frackowiak, Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochemistry Communications, 2011. 13: p. 38-41.
56. Frackowiak E., K. Fic, M. Meller, and G. Lota, Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes. ChemSusChem, 2012. 5: p. 1181-1185.
57. Senthilkumar S. T., R. K. Selvan, Y. S. Lee, and J. S. Melo, Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A, 2013. 1: p. 1086-1095.
58. Senthilkumar S. T., R. K. Selvan, N. Ponpandian, J. S. Melo, and Y. S. Lee, Improved performance of electric double layer capacitor using redox additive (VO2+/VO2+) aqueous electrolyte. Journal of Materials Chemistry A, 2013. 1: p. 7913.
59. Roldán S., M. Granda, R. Menéndez, R. Santamaría, and C. Blanco, Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. The Journal of Physical Chemistry C, 2011. 115: p. 17606-17611.
60. Roldán S., M. Granda, R. Menéndez, R. Santamaría, and C. Blanco, Supercapacitor modified with methylene blue as redox active electrolyte. Electrochimica Acta, 2012. 83: p. 241-246.
61. Wu J., H. Yu, L. Fan, G. Luo, J. Lin, and M. Huang, A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. Journal of Materials Chemistry, 2012. 22: p. 19025.
62. Yamazaki S., T. Ito, M. Yamagata, and M. Ishikawa, Non-aqueous electrochemical capacitor utilizing electrolytic redox reactions of bromide species in ionic liquid. Electrochimica Acta, 2012. 86: p. 294-297.
63. Tooming T., T. Thomberg, L. Siinor, K. Tõnurist, A. Jänes, and E. Lust, A Type High Capacitance Supercapacitor Based on Mixed Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions. Journal of The Electrochemical Society, 2014. 161: p. A222-A227.
64. Taniki R., K. Matsumoto, T. Nohira, and R. Hagiwara, Evaluation of Double-Layer and Redox Capacitances of Activated Carbon Electrodes in N-Ethyl-N-methylpyrrolidinium Fluorohydrogenate Ionic Liquid. Journal of The Electrochemical Society, 2013. 160: p. A734-A738.
65. Ionica-Bousquet C. M., W. J. Casteel, R. M. Pearlstein, G. GirishKumar, G. P. Pez, P. Gómez-Romero, M. R. Palacín, and D. Muñoz-Rojas, Polyfluorinated boron cluster – [B12F11H]2− – based electrolytes for supercapacitors: Overcharge protection. Electrochemistry Communications, 2010. 12: p. 636-639.
66. Koh A. R., B. Hwang, K. C. Roh, and K. Kim, The effect of the ionic size of small quaternary ammonium BF(4) salts on electrochemical double layer capacitors. Phys Chem Chem Phys, 2014. 16: p. 15146-15151.
67. Zheng C., J. Gao, M. Yoshio, L. Qi, and H. Wang, Non-porous activated mesophase carbon microbeads as a negative electrode material for asymmetric electrochemical capacitors. Journal of Power Sources, 2013. 231: p. 29-33.
68. Yu X., D. Ruan, C. Wu, J. Wang, and Z. Shi, Spiro-(1,1′)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. Journal of Power Sources, 2014. 265: p. 309-316.
69. Kim M. and S. Kim, Electrochemical properties of non-aqueous electrolytes containing spiro-type ammonium salts. Journal of Industrial and Engineering Chemistry, 2014. 20: p. 4447-4451.
70. Zhou H.-m., W.-j. Sun, and J. Li, Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor. Journal of Central South University, 2015. 22: p. 2435-2439.
71. Mysyk R., E. Raymundo-Pinero, J. Pernak, and F. Béguin, Confinement of symmetric tetraalkylammonium ions in nanoporous carbon electrodes of electric double-layer capacitors. The Journal of Physical Chemistry C, 2009. 113: p. 13443-13449.
72. McDonough J. K., A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, and Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 2012. 50: p. 3298-3309.
73. Han T., M.-S. Park, J. Kim, J. H. Kim, and K. Kim, The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors. Chem. Sci., 2016. 7: p. 1791-1796.
74. Pohlmann S., T. Olyschläger, P. Goodrich, J. Alvarez Vicente, J. Jacquemin, and A. Balducci, Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. Journal of Power Sources, 2015. 273: p. 931-936.
75. Senda A., K. Matsumoto, T. Nohira, and R. Hagiwara, Effects of the cationic structures of fluorohydrogenate ionic liquid electrolytes on the electric double layer capacitance. Journal of Power Sources, 2010. 195: p. 4414-4417.
76. Ue M., Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ‐butyrolactone. Journal of the electrochemical society, 1994. 141: p. 3336-3342.
77. Kim Y.-J., Y. Masutzawa, S. Ozaki, M. Endo, and M. S. Dresselhaus, PVDC-Based Carbon Material by Chemical Activation and Its Application to Nonaqueous EDLC. Journal of The Electrochemical Society, 2004. 151: p. E199-E205.
78. Galiński M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51: p. 5567-5580.
79. Ue M., Chemical capacitors and quaternary ammonium salts. Electrochemistry, 2007. 75: p. 565-572.
80. Zheng J. P. and T. R. Jow, The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors. Journal of The Electrochemical Society, 1997. 144: p. 2417-2420.
81. Lewandowski A., A. Olejniczak, M. Galinski, and I. Stepniak, Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources, 2010. 195: p. 5814-5819.
82. Krause A. and A. Balducci, High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes. Electrochemistry Communications, 2011. 13: p. 814-817.
83. Palm R., H. Kurig, K. Tõnurist, A. Jänes, and E. Lust, Electrical double layer capacitors based on 1-ethyl-3-methylimidazolium tetrafluoroborate with small addition of acetonitrile. Electrochimica Acta, 2012. 85: p. 139-144.
84. Hantel M. M., A. Płatek, T. Kaspar, R. Nesper, A. Wokaun, and R. Kötz, Investigation of diluted ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate electrolytes for intercalation-like electrodes used in supercapacitors. Electrochimica Acta, 2013. 110: p. 234-239.
85. Palm R., H. Kurig, K. Tõnurist, A. Jänes, and E. Lust, Influence of Different Organic Solvent Additives on 1-ethyl-3-methylimidazolium Tetrafluoroborate Electrolyte Based Electrical Double Layer Capacitors. Journal of The Electrochemical Society, 2013. 160: p. A1741-A1745.
86. Xie Y.-b., W.-m. Qiao, W.-y. Zhang, G.-w. Sun, and L.-c. Ling, Effect of the surface chemistry of activated carbon on its electrochemical properties in electric double layer capacitors. New Carbon Materials, 2010. 25: p. 248-254.
87. Xiao Y., A. Zhang, S. Liu, J. Zhao, S. Fang, D. Jia, and F. Li, Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. Journal of Power Sources, 2012. 219: p. 140-146.
88. Taberna P. L., P. Simon, and J. F. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. Journal of The Electrochemical Society, 2003. 150: p. A292.
89. Xu B., F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, and Y. Yang, Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. Journal of Power Sources, 2006. 158: p. 773-778.
90. Jiang J., M. Zhou, H. Chen, Z. Wang, L. Bao, S. Zhao, S. Guan, and J. Chen, Hierarchically porous carbon derived from an aqueous curable composition for supercapacitors. Electrochimica Acta, 2015. 168: p. 300-307.
91. Ahuja P., V. Sahu, S. K. Ujjain, R. K. Sharma, and G. Singh, Performance evaluation of Asymmetric Supercapacitor based on Cobalt manganite modified graphene nanoribbons. Electrochimica Acta, 2014. 146: p. 429-436.
92. Ujjain S. K., A. Das, G. Srivastava, P. Ahuja, M. Roy, A. Arya, K. Bhargava, N. Sethy, S. K. Singh, R. K. Sharma, and M. Das, Nanoceria based electrochemical sensor for hydrogen peroxide detection. Biointerphases, 2014. 9: p. 031011.
93. Ujjain S. K., P. Ahuja, and R. K. Sharma, Graphene nanoribbon wrapped cobalt manganite nanocubes for high performance all-solid-state flexible supercapacitors. J. Mater. Chem. A, 2015. 3: p. 9925-9931.
94. Ujjain S. K., G. Singh, and R. K. Sharma, Co3O4@Reduced Graphene Oxide Nanoribbon for high performance Asymmetric Supercapacitor. Electrochimica Acta, 2015. 169: p. 276-282.
95. Ujjain S. K., P. Ahuja, R. Bhatia, and P. Attri, Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors. Materials Research Bulletin, 2016. 83: p. 167-171.
96. Malviya M., J. Singh, B. Lal, and R. Singh, Transport behaviour of Cl^-in composite films of polypyrrole and CoFe~ 2SO~ 4 obtained for oxygen reduction. Journal of New Materials for Electrochemical Systems, 2005. 8: p. 221.
97. Pean C., B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P. L. Taberna, P. Simon, and M. Salanne, Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes. J Am Chem Soc, 2015. 137: p. 12627-12632.
98. Tsai W. Y., P. L. Taberna, and P. Simon, Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J Am Chem Soc, 2014. 136: p. 8722-8728.
99. Levi M. D., G. Salitra, N. Levy, D. Aurbach, and J. Maier, Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat Mater, 2009. 8: p. 872-875.
100. Levi M. D., N. Levy, S. Sigalov, G. Salitra, D. Aurbach, and J. Maier, Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. Journal of the American Chemical Society, 2010. 132: p. 13220-13222.
101. Levi M. D., S. Sigalov, D. Aurbach, and L. Daikhin, In Situ Electrochemical Quartz Crystal Admittance Methodology for Tracking Compositional and Mechanical Changes in Porous Carbon Electrodes. The Journal of Physical Chemistry C, 2013. 117: p. 14876-14889.
102. Kiso Y. and T. Hirokawa, Correlation between formula weights and absolute mobilities obtained by isotachophoresis for alkylammonium and carboxylate ions. Chemistry Letters, 1979. 8: p. 891-894.
103. Abbott A. P. and K. J. McKenzie, Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys, 2006. 8: p. 4265-4279.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2017-5-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明