博碩士論文 103350601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:54.225.57.120
姓名 施帝望(Dody Setiawan)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 印度尼西亞.松巴島的農村電氣化評估選項: 一個基於空間的供需平衡法則
(Assessment of Rural Electrification Strategy in Sumba Island, Indonesia: A GIS-based supply-demand approach)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Sumba Iconic Island是一項由印尼政府能源與礦產部門執行的計畫,目標在於藉由再生能源,發展出最適合實行的農村電氣化模型。計畫在現階段已展現出成效,同時,對於不同再生能源的選擇及應用也需要更進一步的研究及討論。本研究將評估目前和未來的用電需求、了解再生能源技術的潛在發展能力,進而找出最佳的成本效益選擇,希望以地方可獲得的資源條件來供應地方的電力需求。另外,在研究方法上,本研究對於能夠滿足未來能源需求的不同再生能源,以循序漸進、整合供需分析的方式進行比較。針對未來能源需求的預測,本研究主要以人口成長、經濟發展、生產所需電力(Productive Use of Electricity, PUE)作為推算的基礎。接著,有關再生能源的資源利用,也會根據地方的區域特色和生產電力的科技條件限制進行評估。最後,以電力平準成本(Levelized Cost of Electricity, LCOE)為基準比較各項再生能源的選擇。
電力的需求主要可以分成三個主要類別:家庭用電、公共設施用電以及生產用電(PUE)。估計在2025年,總用電需求會成長三倍,到達1.9 GWh/年,其中超過80%為家庭用電需求。若從估算電力生產來看再生能源的科技潛力,太陽光電有最大的可用度,每年7755 GWh,其次為風力發電537 GWh/年,再者為小型水力發電,2.56 GWh/年。然而,針對每個地點以不同的再生能源科技進行成本比較,發現成本的變化範圍極大。太陽光電為最常被選擇的技術,因為發電量較為平均,每個地方產出的電量差異不大,也具有較低的投資和維護成本。小型水力發電相較之下,雖然可用度不高,但是卻有絕對的最低電力平準成本(LCOE)($0.39/kWh)。風力發電技術的地點選擇,多半考慮最適合風力發電的地區或是太陽光電與小型水力發電不可行的地區。因此,若從成本的面向來評估,在考慮其他再生能源技術以前,印尼農村地區的電氣化應以小型水力發電發展為優先考量。
摘要(英) Sumba Iconic Island is an initiative by Ministry of Energy and Mineral Resources, Indonesia to develop best practice rural electrification model using renewable energy (RE). Progress has already been made and it requires further study on different RE options. This study aims to assess current and projected electricity demand, identify RE technical potential and to find the most cost-effective configuration to meet electricity demand using locally available resources. This study was conducted using consecutive order and integrated supply-demand analysis by comparing available RE solutions to fully supply projected electricity demand. Electricity demand was projected based on population growth, economic development and emergence of productive use of electricity (PUE). Then, renewable energy resources were assessed based on climatic and local topographic characteristics which gave an estimate of electricity production. Finally, each RE options were compared in the basis of levelized cost of electricity (LCOE). The electricity demand was divided into three major categories: household, public infrastructures and PUE. The total electricity demand is projected to triple to 1.9 GWh/year in 2025, with more than 80% from household demand. RE technical potential was calculated with estimated electricity generation for Photovoltaic (PV) is the largest among three RE options available (7755 GWh/year), followed by wind energy (537 GWh/year) and MHPP (2.56 GWh/year). However, cost comparison using different RE technology on each site suggest wide range of cost spectrum. PV technology is the mostly chosen technology because of its uniform output and low initial and recurring cost compared to other RE technology. MHPP comes after PV because of limited availability but it offers significantly low LCOE ($0.39/kWh). Wind solution was only chosen on windy site where suitable site for PV is far and MHPP site is unavailable. This concludes that rural electrification should prioritize MHPP if it is available before considering other RE technologies because it offers least-cost solution.
關鍵字(中) ★ Sumba Iconic Island
★ 農村電氣化
★ 再生能源
★ 電力平準成本(LCOE)
關鍵字(英) ★ Sumba Iconic Island
★ rural electrification
★ renewable energy
★ LCOE
論文目次 CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENT iv
TABLE OF FIGURES v
LIST OF TABLES vi
Abbreviations vii
Notations viii
INTRODUCTION 1
1.1. Research Problems 1
1.2. Objectives 3
1.3. Scope of Study 4
1.4. Organization of the Thesis 4
1.5. Thesis Limitations 5
LITERATURE REVIEW 6
2.1. Rural Electrification in Indonesia 6
2.2. Rural Electrification Strategy 8
2.3. Renewable Energy for Rural Electrification 9
2.4. GIS analysis for rural electrification 12
2.5. Sumba Iconic Island 14
RESEARCH METHODS 16
3.1. Methodological Framework 16
3.2. Demand Analysis 18
3.3. RE Technical Potentials 25
3.4. Supply-demand balance 33
3.5. LCOE Assessment 36
RESULTS AND DISCUSSIONS 40
4.1. Study Area 40
4.2. Electricity demand 41
4.3. Renewable Energy Potential 45
4.4. Supply-demand analysis 59
4.5. Cost Analysis 62
4.6. Proposed Solution 64
CONCLUSIONS AND RECOMMENDATIONS 68
5.1. Conclusions 68
5.2. Recommendations 70
REFERENCES 71
APPENDIX 77
參考文獻 ADB (2016). Achieving Universal Electricity Access in Indonesia. Mandaluyong City, Phillipine, Asian Development Bank.
APEC (2013). Peer Review on Low Carbon Energy Policies in Indonesia, APEC.
Asiyanbola, A. (2005). Patriarchy, male dominance, the role and women empowerment in Nigeria. Poster presentado en la XXV International Population Conference Tours, Francia.
Bailey, B. H., S. L. McDonald, D. Bernadett, M. Markus and K. Elsholz (1997). "Wind resource assessment handbook." Albany-New York: AWS Scientific Inc.
Barrios, L. and A. Rodriguez (2004). "Behavioural and environmental correlates of soaring‐bird mortality at on‐shore wind turbines." Journal of applied ecology 41(1): 72-81.
Bensch, G., J. Kluve and J. Peters (2011). "Impacts of rural electrification in Rwanda." Journal of Development Effectiveness 3(4): 567-588.
Bergström, D. and C. Malmros (2005). "Finding potential sites for small-scale hydro power in Uganda: a step to assist the rural electrification by the use of GIS: a minor field study." Lunds universitets Naturgeografiska institution-Seminarieuppsatser.
BIG (2013). Land Cover Map 25K scale. G. I. A. (BIG), Geospatial Information Agency (BIG).
Blum, N. U., R. S. Wakeling and T. S. Schmidt (2013). "Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia." Renewable and Sustainable Energy Reviews 22: 482-496.
Boait, P. (2014). Technical Aspects of Mini-Grids for Rural Electrification. Mini-Grids for Rural Electrification of Developing Countries, Springer: 37-61.
BPS (2015). Kahaungu Eti in Figures 2015. Waingapu, BPS – Statistics of Sumba Timur Regency.
Branker, K., M. Pathak and J. M. Pearce (2011). "A review of solar photovoltaic levelized cost of electricity." Renewable and Sustainable Energy Reviews 15(9): 4470-4482.
Brown, S. V., D. G. Nderitu, P. V. Preckel, D. J. Gotham and B. W. Allen (2011). Renewable Power Opportunities for Rural Communities USDA.
Byrne, J., A. Zhou, B. Shen and K. Hughes (2007). "Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: A GIS- and lifecycle cost-based assessment of Western China′s options." Energy Policy 35(8): 4391-4401.
Castlerock (2014). Mid-Term Report (Final): Least-Cost Electrification Plan for the Iconic Island. ADB TA 8287-INO: Scaling Up Renewable Energy Access in Eastern Indonesia. Jakarta, Castlerock Consulting.
Collar, N. J., A. Andreev, S. Chan, M. Crosby, S. Subramanya, J. Tobias, S. Churchill, H. Balslev, E. Forero and J. Luteyn (2001). Threatened birds of Asia: the BirdLife International red data book, Birdlife International, Cambridge (RU).
Dahle, D. (2008). Assessing the potential for renewable energy development on DOE legacy management lands, National Renewable Energy Laboratory.
Dinkelman, T. (2011). "The effects of rural electrification on employment: New evidence from South Africa." The American Economic Review: 3078-3108.
Dong, J. (2008). "GIS and location theory based bioenergy systems planning."
Doris, E., A. Lopez and D. Beckley (2013). Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands, US Department of Energy, Office of Indian Energy.
Elliott, D. (2002). Assessing the world′s wind resources. Power Engineering Society Winter Meeting, 2002. IEEE, IEEE.
Elliott, D. L. and M. N. Schwartz (1997). Recent wind resource characterization activities at the National Renewable Energy Laboratory. Golden, CO (United States), National Renewable Energy Laboratory.
Emerson, D. G., A. V. Vecchia and A. L. Dahl (2005). Evaluation of drainage-area ratio method used to estimate streamflow for the Red River of the North Basin, North Dakota and Minnesota, US Department of the Interior, US Geological Survey.
ESRI. (2007). "Understanding solar radiation analysis." ArcGIS 9.2 Desktop Help Retrieved 1/18/2016, 2016, from http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?
Flynn, R. H. (2003). Development of regression equations to estimate flow durations and low-flow-frequency statistics in New Hampshire streams, US Department of the Interior, US Geological Survey.
Foster, R., M. Ghassemi and A. Cota (2009). Solar energy: renewable energy and the environment, CRC Press.
Geiß, C., H. Taubenböck, M. Wurm, T. Esch, M. Nast, C. Schillings and T. Blaschke (2011). "Remote sensing-based characterization of settlement structures for assessing local potential of district heat." Remote Sensing 3(7): 1447-1471.
Hermann, S., A. Miketa and N. Fichaux (2014). Estimating the Renewable Energy Potential in Africa: A GIS-based approach. IRENA-KTH working paper. Abu Dhabi, International Renewable Energy Agency.
HIVOS (2012). Sumba: An Iconic Island to demonstrate the potential of renewable energy. Sumba Iconic Island Reports.
Höfer, T., Y. Sunak, H. Siddique and R. Madlener (2016). "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen." Applied Energy 163: 222-243.
IBEKA (2011). Bakuhau Microhydro Power. Jakarta, IBEKA.
Ibrahim, H., N. Thaib and L. Abdul Wahid (2010). "Indonesia energy scenario to 2050: Projection of consumption, supply option and primary energy mix scenarios." Jakarta, Indonesia.
IRENA (2015). Renewable Power Generation Costs in 2014, International Renewable Energy Agency.
Irizarry-Rivera, A. A., E. O′Neill-Carillo, J. A. Colucci-Ríos and P. R. A. de Asuntos Energéticos (2009). Achievable Renewable Energy Targets for Puerto Rico′s Renewable Energy Portfolio Standard: Final Report, Universidad de Puerto Rico, Recinto Universitario de Mayagüez.
JRI (2013). Socio-Economic-Gender Baseline Survey. Sumba Iconic Island Reports. Jakarta, JRI Research.
Kaldellis, J. K. and K. A. Kavadias (2007). "Cost–benefit analysis of remote hybrid wind–diesel power stations: Case study Aegean Sea islands." Energy Policy 35(3): 1525-1538.
Kaldellis, J. K., E. Kondili and A. Filios (2006). "Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost." Applied Energy 83(12): 1384-1403.
Kaygusuz, K. (2011). "Energy services and energy poverty for sustainable rural development." Renewable and Sustainable Energy Reviews 15(2): 936-947.
Kemausuor, F., E. Adkins, I. Adu-Poku, A. Brew-Hammond and V. Modi (2014). "Electrification planning using Network Planner tool: The case of Ghana." Energy for Sustainable Development 19: 92-101.
Kirby, M., D. Dahle, D. Heimiller and B. Owens (2003). Assessing the potential for renewable energy on public lands. US Department of the Interior and US Department of Energy, DOE/GO-102003-1704.
Lopez, A., B. Roberts, D. Heimiller, N. Blair and G. Porro (2012). "US renewable energy technical potentials: a GIS-based analysis." Contract 303: 275-3000.
Luna-Rubio, R., M. Trejo-Perea, D. Vargas-Vázquez and G. Ríos-Moreno (2012). "Optimal sizing of renewable hybrids energy systems: A review of methodologies." Solar Energy 86(4): 1077-1088.
Mayer-Tasch, L., M. Mukherjee and K. Reiche (2013). Productive Use of Energy – PRODUSE: Measuring Impacts of Electrification on Small and Micro Enterprises in Sub-Saharan Africa. Germany, GIZ.
McMahon, T., J. Fenton, M. Stewardson, J. Costelloe and B. Finlayson (2002). "Estimating discharge at an ungauged site." Australian Journal of Water Resources 5(1): 113-117.
Meier, P. (2015). Tariff Support for Wind Power and Rooftop Solar PV in Indonesia. Sustainable Infrastructure Assistance Program. ADB. Manila, Asian Development Bank.
MEMR (2015). The Book of Electricity Statistics Jakarta, Ministry of Energy and Mineral Resources.
Mohammed, Y., M. Mustafa and N. Bashir (2014). "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues." Renewable and Sustainable Energy Reviews 35: 527-539.
Mukherjee, I., A. Cabraal and E. Terrado (2008). "Operational guidance for World Bank Group staff: designing sustainable off-grid rural electrification projects-principles and practices."
NREEC (2012). The Blueprint and Roadmap for Sumba Island Development Program as Renewable Energy Iconic Island. Sumba Iconic Island Reports, General Directorate of New and Renewable Energy and Energy Conservation.
Ohiare, S. (2015). "Expanding electricity access to all in Nigeria: a spatial planning and cost analysis." Energy, Sustainability and Society 5(1): 1-18.
Olsen, T. and R. Preus (2015). Small Wind Site Assessment Guidelines. No. NREL/TP-5000-63696, NREL (National Renewable Energy Laboratory (NREL).
Parshall, L., D. Pillai, S. Mohan, A. Sanoh and V. Modi (2009). "National electricity planning in settings with low pre-existing grid coverage: Development of a spatial model and case study of Kenya." Energy Policy 37(6): 2395-2410.
Pellegrino, M., E. Caiaffa, A. Grassi and M. Pollino (2008). GIS as a tool for solar urban planning. Proceedings of 3rd International Solar Energy Society Conference-Asia Pacific Region (ISES-AP 2008), Sydney, Australia.
Peña, R. and A. Medina (2010). Capacity Estimation Methods Applied to Mini Hydro Plants, INTECH Open Access Publisher.
Pereira, M. G., M. A. V. Freitas and N. F. da Silva (2010). "Rural electrification and energy poverty: empirical evidences from Brazil." Renewable and Sustainable Energy Reviews 14(4): 1229-1240.
Pertamina (2013). Towards Sustainable Energy for All. Sustainability Report. Jakarta, Pertamina.
PLN (2015). Electricity Supply Business Plan PT. PLN 2015 - 2024. Jakarta, PLN.
Post, D. A. (2004). A new method for estimating flow duration curves: an application to the Burdekin River Catchment, North Queensland, Australia. Complexity and Integrated Resources Management, Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, iEMSs: Manno, Switzerland.
Ritter, R. (2011). Scoping Mission on Off-Grid Electrification 02/2011. Sumba Iconic Island Reports, HIVOS.
Schultz, R. W. and A. Suryani (2013). Productive Use of Energy (PUE): Findings of the EnDev Indonesia Pilot Project. Jakarta, Energising Development (EnDev) Indonesia.
Shaahid, S. M. and I. El-Amin (2009). "Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—A way forward for sustainable development." Renewable and Sustainable Energy Reviews 13(3): 625-633.
Sovacool, B. K. (2013). "A qualitative factor analysis of renewable energy and Sustainable Energy for All (SE4ALL) in the Asia-Pacific." Energy Policy 59: 393-403.
Sun, Y.-w., A. Hof, R. Wang, J. Liu, Y.-j. Lin and D.-w. Yang (2013). "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province." Energy Policy 58: 248-259.
TRMM (2011). TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7. T. R. M. M. P. (TRMM), Goddard Earth Sciences Data and Information Services Center (GES DISC)
Ulsrud, K., T. Winther, D. Palit and H. Rohracher (2015). "Village-level solar power in Africa: Accelerating access to electricity services through a socio-technical design in Kenya." Energy Research & Social Science 5: 34-44.
UNDP (2009). Project Facts: Rural Development with Renewable Energy. Jakarta, UNDP Indonesia.
UNEP (2005). Energizing Millenium Development Goals: A Guide to Energy′s Role in Reducing Poverty. New York, UNEP.
USGS (2004). Shuttle Radar Topography Mission. USGS. College Park, Maryland, Global Land Cover Facility, University of Maryland.
Utomo, S. B. (2015). "Improving Rural Electrification in Eastern Indonesia through Institutional Capacity Development."
Vel, J. A. and S. Makambombu (2010). "Access to agrarian justice in Sumba, Eastern Indonesia." Law, Social Justice and Global Development Journal 15.
Vestas (2014). Vestas and Danish Government Announce Support for Island Project in Indonesia. Aarhus, Vestas Wind Systems.
Wakeyama, T. and S. Ehara (2011). Estimation of renewable energy potential and use–a case study of Hokkaido, Northern-Tohoku area and Tokyo Metropolitan, Japan. World Renewable Energy Congress.
Wali, U. G. (2013). "Estimating hydropower potential of an ungauged stream." Int J Emerg Technol Adv Eng 3: 592.
Walker, J. S., A. J. Cahill and S. J. Marsden (2005). "Factors influencing nest-site occupancy and low reproductive output in the Critically Endangered Yellow-crested Cockatoo Cacatua sulphurea on Sumba, Indonesia." Bird Conservation International 15(04): 347-359.
WBG (2007). Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies. ESMAP Technical Paper 121/07. Washington DC, The World Bank.
WBG (2008). Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practices. Washington DC, The World Bank.
WBG (2008). The Welfare Impact of Rural Electrification: A Reassessment of the Costs and Benefits, World Bank.
WBG. (2015). "Progress Toward Sustainable Energy." Global Tracking Framework 2015 Summary Report Retrieved 2016/03/18, 2016, from http://www.worldbank.org/.
WinRock (2010). Preliminary Resource Assessment Sumba and Buru Islands, Indonesia. Fuel Independent Renewable Energy "Iconic Island". New York, WinRock International.
Yeager, K. (2001). Electricity development for a sustainable World: bridging the digital divide. World Energy Council 18th Congress—Buenos.
Younis, A. M. and I. F. Hasan (2014). "Prediction of Flow Duration Curve for Seasonal Rivers in Iraq." Jordan Journal of Civil Engineering 8 (1).
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明