博碩士論文 103350603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.131.110.169
姓名 柯寶菈(Paola Jackeline Cruz Ceballos)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 加固改造的可行性分析CA-13道路照明在LA CEIBA, 洪都拉斯
(A FEASIBILITY ANALYSIS OF RETROFITTING CA-13 ROADWAY LIGHTING IN LA CEIBA, HONDURAS)
相關論文
★ 太陽光電躉購制度國際比較★ 人口結構變遷對電力需求之影響
★ 台灣與日、韓環境顧志耐曲線之應用-二氧化碳排放變動分析★ 「垃圾按量付費」措施之成本效益分析:以貝里斯San Ignacio城市為例
★ 甘比亞沿海地帶離岸石油探勘與生產對環境及社會經濟的潛在影響★ A FEASIBILITY STUDY ON COAL-FIRED POWER PLANT DEVELOPMENT PLAN IN SWAZILAND
★ 節能分析─以加勒比海國家為例★ 衡量能源效率在伯利兹的公路客運部門
★ 火力發電廠周邊居民健康成本的推估與補償機制研究★ 台灣住宅部門電力效率提高因素探討
★ 人口結構與油價對家計部門油品需求之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) ENEE係為宏都拉斯負責管理道路照明設備的政府機構,約占有3%總能源消耗量 。近年來 (Negri de Magalhäes & Morales Udaeta, 2008),ENEE開始運用水銀路燈,惟許多研究指出水銀路燈不僅對環境有害,照明效率亦不佳。因此,ENEE改採用高效能、更長平均壽命且對環境傷害較少的高壓鈉燈以取代水銀路燈。 本文從技術、經濟及外部性三方面探討以LED取代傳統路燈照明的可行性。道路照明的模擬分析方面,本文利用DIAlux及RETScreen分析方法來比較LED及其他各種照明方式的優缺點,最後並做成本效益、節能及減碳的量化分析。 本文的主要研究發現為: 1. 在初期的設置成本方面,LED雖高於其他傳統照明燈具,但LED在節能及維修保養方面卻優於傳統照明燈具。這確實是LED被許多城市採用來替代傳統照明燈具的重要原因。 2. 本文採用的具體例證也顯示,比較高壓鈉燈LED的能源成本一年可節省23.3萬度、價值美金約38,986元,且其投資回收期為5年、內部報酬率20.5%、效益成本比為1.83,符合經濟可行性評估。此外,溫室氣體每年可減少77.5噸CO2。 總之,以市政能源耗用挑戰、路燈網路支出和城市品質而言,LED路燈提供一個有效且富有成本效益性的解決方案。
摘要(英) The ENEE is a government institute in charge of the management of the roadway lighting in Honduras which is about 3% of the total energy consumption (Negri de Magalhäes & Morales Udaeta, 2008). Over the years, the ENEE began using high intensity discharge mercury lamps which emit a cold light (white), after several studies either environmental or lighting efficiency, they resulted in poor illumination and regarding the environmental issue mercury is harmful to health. After these studies, the ENEE switch to sodium vapor lamps that have a higher efficiency, longer average life and contain a minimum amount of mercury in their bulbs.
This paper performs a feasibility assessment by evaluating the technical, economical an external aspects of the alternative plan. A roadway lighting simulation executed by DIAlux and a RETScreen analysis of the cost and benefits, is being provided in this research in order to estimate the strength and weaknesses of each alternative that satisfied the requirements for retrofitting lighting structures. This type of analyses helped determined the best option to obtain the best approach for the adoption and practice in terms of benefits in costs, energy savings and carbon dioxide reduction.
Findings from the study demonstrate that although the initial costs of retrofitting conventional lighting to LED are high, it was found that energy and maintenance savings are real and these are the main motivations for why many cities conduct LED street light projects. For the proposed case, the fuel saved is 233 MWh, in terms of money the savings ascend to $38,986 (53.3%) annually compared to the high pressure sodium lamps. Financially, this is a viable project, the payback is in 5 years, the NPV is a positive value ($196,689), and there is a high IRR (20.5%) which is an attractive percentage for the investor. Also, the benefit-cost ratio is 1.83, this value being greater than one, making the project acceptable. And the reduction of GHG emission will be 77.5 tCO2 annually.
In conclusion, LED street lights offer an effective and increasingly cost effective solution to the development challenge of municipal energy consumption, street light network expenditures and urban quality.
關鍵字(中) ★ 企業再造
★ 發光二極體(LED)
★ 發光效能
★ RETScreen
★ DIAlux
關鍵字(英) ★ Retrofitting,
★ LED,
★ Lighting Efficiency
★ RETScreen
★ DIAlux
論文目次 CHAPTER 1. INTRODUCTION ................................................................................................ 1
1.1 General Information about La Ceiba ............................................................................. 1
1.2 Background of the Problem ........................................................................................... 1
1.3 Defining the Problem .................................................................................................... 2
1.4 Objectives ..................................................................................................................... 3
1.5 Research Variables ....................................................................................................... 3
1.6 Purpose of this Research ............................................................................................... 4
CHAPTER 2. LITERATURE REVIEW ..................................................................................... 5
2.1 History of Street Lights ...................................................................................................... 5
2.2 Traditional Lighting: High Pressure Sodium Roadway ....................................................... 8
2.3 Carbon Dioxide Emission from Traditional Roadway Lighting .......................................... 9
2.4 Retrofitting Roadway Lighting .........................................................................................12
2.5 Overview of LED Technology ..........................................................................................14
2.5.1 Characteristics of LEDs ..............................................................................................14
2.5.2 Comparison of LEDs with other Lighting Sources for Roadways ...............................15
2.5.3 LED Prices for the Future ..............................................................................................19
2.5.4 Street Light Comparison between Lumens and Luxs ......................................................21
2.6 Success Stories of Retrofitting Roadway Lighting with LEDs ...........................................23
2.7 Cost-Benefit Analysis .......................................................................................................24 2.8 Carbon Dioxide Emission Analysis ...................................................................................25
2.9 Financial Analysis ............................................................................................................26
CHAPTER 3. METHODOLOGY ..............................................................................................27
3.1 Flowchart Procedure of the Research ................................................................................27
3.2 Simulation with DIAlux ....................................................................................................28
v
3.3 RETScreen Analysis .........................................................................................................29
CHAPTER 4. RESULTS AND DISCUSSION ..........................................................................32
4.1 DIAlux Simulation for HPS Luminaire .............................................................................32
4.1.1 400W HPS Luminaire Simulation ..............................................................................33
4.1.2 250W HPS Luminaire Simulation ..............................................................................35
4.1.3 100W HPS Luminaire Simulation ..............................................................................38
4.2 DIAlux Simulation for LED Luminaires ...........................................................................40
4.2.1 Simulation Summary and Comparison between HPS and LED Luminaires. ...............41
4.2.2 150W LED Luminaire Simulation ..............................................................................42
4.3 RETScreen Analysis .........................................................................................................45
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS ................................................53
REFERENCES ..........................................................................................................................55
APPENDIX A. POLAR INTENSITY DIAGRAM FOR HPS LUMINAIRES............................59
APPENDIX B. POLAR INTENSITY DIAGRAM FOR LED LUMINAIRE .............................60
APPENDIX C. SIMULATION OF A 200W LED LUMINAIRE ...............................................62
APPENDIX D. PHOTOMETRIC AND ISOLINE RESULTS OF A 200W LED LUMINAIRE. 63
APPENDIX E. SIMULATION OFA 70W LED LUMINAIRE ..................................................64
APPENDIX F. PHOTOMETRIC AND ISOLINE RESULTS OF A 70W LED LUMINAIRE. ..65
APPENDIX G. RETSCREEN RESULTS ..................................................................................66
Energy Model .........................................................................................................................66
Cost Analysis .........................................................................................................................67
Emission Analysis ..................................................................................................................67
Financial Analysis ..................................................................................................................68
APPENDIX H. FINANCIAL ANALYSIS FOR 5 YEARS PROJECT LIFETIME ....................69
vi
LIST OF FIGURES
Figure 1. Research variables of the study .................................................................................... 3
Figure 2. Metal halide bulb ......................................................................................................... 6
Figure 3. Mercury vapor bulb ...................................................................................................... 6
Figure 4. High pressure sodium bulb ........................................................................................... 7
Figure 5. LED bulbs .................................................................................................................... 8
Figure 6. Percent energy savings in light saver cities, LED compared with baseline HID luminaire....................................................................................................................................15
Figure 7. LED efficiency rapidly surpassing that of incumbent lighting technology....................16
Figure 8. Waste light of HPS luminaire ......................................................................................18
Figure 9. Task area of LED luminaire ........................................................................................18
Figure 10. White LED technology and cost have improved rapidly over the past decade ............20
Figure 11. Flowchart procedure ..................................................................................................27
Figure 12. Street profile of CA-13 roadway................................................................................32
Figure 13.Roadway simulation for 400W HPS luminaire ...........................................................33
Figure 14. Photometric results of a 400W HPS luminaire ...........................................................34
Figure 15. Isolines of a 400W HPS luminaire .............................................................................35
Figure 16. Roadway simulation for a 250W HPS luminaire ........................................................36
Figure 17. Photometric results of a 250W HPS luminaire ...........................................................37
Figure 18. Isolines of a 250W HPS luminaire .............................................................................37
Figure 19. Roadway simulation for a 100W HPS luminaire ........................................................39
Figure 20. Photometric results of a 100W HPS luminaire ...........................................................39
Figure 21. Isolines of a 100W HPS luminaire .............................................................................40
Figure 22. Roadway simulation of a 150W LED luminaire ........................................................43
Figure 23. Photometric results of a 150W LED luminaire ..........................................................44
Figure 24. Isolines of a 150W LED luminaire ............................................................................44
Figure 25. Cumulative cash flow graph ......................................................................................49
Figure 26. Sensitivity analysis ....................................................................................................49
Figure 27. Tornado graph (risk analysis) ....................................................................................50
Figure 28. Distribution after-tax IRR equity (risk analysis) ........................................................50
Figure 29. LED price projection .................................................................................................52
vii
LIST OF TABLES
Table 1. HPS fixture power ........................................................................................................11
Table 2. Street lighting technology comparison ..........................................................................17
Table 3. LED device efficacy and price are expected to continue to improve rapidly ..................20
Table 4. Roadway characteristics for designing in DIAlux .........................................................28
Table 5. Luminance factors ........................................................................................................29
Table 6. Illuminance factors .......................................................................................................29
Table 7. Summary simulation for HPS and LED luminaires .......................................................41
Table 8.Inputs use in RETScreen ...............................................................................................45
Table 9. RETScreen result summary (Electricity consumption, cost and GHG emissions) ..........46
Table 10. Financial summary .....................................................................................................47
Table 11. Financial viability for five years .....................................................................51
參考文獻 Wikimedia Foundation, Inc. (2015, August 28). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Electric_energy_consumption
Banco Central de Honduras. (2008). BCH. Retrieved from http://www.bch.hn/
Bioquip Products. (n.d.). Retrieved from https://www.bioquip.com/prod_images/2819-001-160W-SB-Mercury-Vapor-Lamp.jpg
Brillianz. (2006). Educypedia. Retrieved from http://educypedia.karadimov.info/library/Lumen.pdf
Carter, D. K., Quick, S., Danes, S., Gatti, E., & Branick, K. (2011). LED Street Light Research Project. Pittsburgh, Pennsylvania.
Climate Home. (2014, March 20). Climate Change News. Retrieved from http://www.climatechangenews.com/2014/03/20/led-costs-to-halve-as-efficiency-doubles-by-2020-us-dept-of-energy/
Craft, K. (2010, August 27). Energy Gov. Retrieved from http://energy.gov/articles/lighting-retrofit-improving-visibility-saving-energy
Department of Energy (DOE). (2008). Roadway Lighting Guidelines. Taguig.
DRK Enterprises Inc. (2008). My LED Lighting Guide. Retrieved from http://www.myledlightingguide.com/article.aspx?articleid=36
Eco Sol Energy. (n.d.). Retrieved from http://www.ecosolenergy.com/documents/Why_Go_for_LED.pdf
Environmental Protecttion Agency (EPA). (2015, September 11). Retrieved from Overview of Greenhouse Gases: http://www3.epa.gov/climatechange/ghgemissions/gases/co2.html
Falzone, F. G. (2015). LED Street Lighting and Retrofitting. Pottstown, Pennsylvania.
Gemini Lights. (2015). Retrieved from http://gemini-lights.com/explore/lux-and-lumens
Gerder, J. (2013). Los Angeles Saves Millions With LED Street Light Deployment. Forbes.
56
Gerke, B. F., Ngo, A. T., Alstone, A. L., & Fisseha, K. S. (2014). The evolving price of household LED lamps: Recent trends and historical comparisons for the US market. Berkely.
Government of Canada. (2010). Natural Resources Canada. Retrieved from http://www.nrcan.gc.ca/energy/software-tools/7465
Green Electrical Supply. (2016). Retrieved from http://www.greenelectricalsupply.com/mh-50w-u-ps-52312-venture-uni-form-r-kr85-m110-e-metal-halide-lamps.aspx
Hartley, D., Jurgens, C., & Zatcoff, E. (2009). Life Cycle Assessment of Streetlight Technologies. Mascaro Center for Sustainable Innovation. Pittsburgh: University of Pittsburgh. Retrieved from http://www.pitt.edu/news2010/Streetlight_Report.pdf
IMERC. (2008). Instituto de Arte. Retrieved from http://www.iar.unicamp.br/lab/luz/ld/Arquitetural/Sa%FAde/imerc_fact_sheet_mercury_use_in_lighting.pdf
Investopedia. (2015). Investopedia. Retrieved from http://www.investopedia.com/terms/o/operating-cost.asp
Jiang, Y., Li, S., Guan, B., & Zhao, G. (2015). Cost Efectiveness of New Roadway Lighting Systems. Journal of Traffic and Transportation Engineering, 158-166. Retrieved from http://www.sciencedirect.com/science/article/pii/S2095756415000264
La Prensa. (2014, August 4). La Prensa. Retrieved from http://www.laprensa.hn/honduras/tegucigalpa/735043-98/crisis-energ%C3%A9tica-en-honduras-vienen-m%C3%A1s-apagones
LED Evolution. (2013). The benefits of LED technology in Lighting. London.
LonMark. (2014). Open Streetlight Control System for Smarter Cities. LonMark International. Retrieved from http://www.lonmark.org/connection/solutions/lighting/SmartStreetlight-LONMARK-Whitepaper.pdf
Lux Lighting. (2006). LED Street Bulb. Retrieved from http://www.ledstreetbulb.com/Street-Light/70W-LED-Street-Lamp.html
57
Negri de Magalhäes, C. H., & Morales Udaeta, M. E. (2008). Prospectiva Energética y Escenarios Posibles. PAPEP. Retrieved from http://www.gvepinternational.org/sites/default/files/resources/prospectiva_energtica_de_honduras.pdf
OSRAM. (2016). Retrieved from http://www.osram.com/osram_com/products/lamps/high-intensity-discharge-lamps/high-pressure-sodium-vapor-lamps-for-open-and-enclosed-luminaires/index.jsp
Palisade. (2016). Retrieved from http://www.palisade.com/risk/monte_carlo_simulation.asp
Philips. (2006). Lumec. Retrieved from https://www.lumec.com/products/luminaires/streetview.html
Riahi-Belkaoui, A. (1998). Financial Analysis and the Predictability of Important Economic Events. Praeger.
Solar Electric Power Company. (2013, April 4). SEPCO-Solar Lighting. Retrieved from http://www.sepco-solarlighting.com/blog/bid/145611/The-Advantages-of-LED-Lights-for-the-Environment
Steiner . (2006). Suprebeam. Retrieved from http://www.suprabeam.com/uk/light
StreetSmart. (2012). Helping the Environment.
Tähkämo, L., & Halonen, L. (2015). Life Cycle Assessment of Road Lighting Luminaires - Comparison of Light-emitting Diode and High-pressure Sodium Technologies. Journal of Cleaner Production, 234-242.
Tähkämo, L., Räsänen, R.-S., & Halonen, L. (2015). Life Cycle Cost Comparison of High-Pressure Sodium and light Emitting Diode Luminaires in Street lighting. Springer, 137-145.
The Climate Group. (2012). Lighting the Clean Revolution: The rise of LEDs and what it means for cities.
The Climate Group. (2013, April 17). Retrieved from http://www.theclimategroup.org/what-we-do/news-and-blogs/led-revolution-underway-in-indian-cities/
58
The Parliamentary Office of Science and Technology. (2010). Lighting Technology. London: Millbank.
Toro, D. (2010). Honduras Verde. Retrieved from http://hondurasverde.es.tl/GEOGRAFIA-DE-LA-CEIBA.htm
U.S. Energy Information Administration. (2014, March 19). EIA. Retrieved from www.eia.gov/todayinenergy/detail.cfm?id=15471
U.S. Energy Information Administration. (2015). Energy-Related Carbon Dioxide Emissions at State Level. Washington, D.C.: n.d.
Vaccariello, F. (2013, July 15). Eye Lighting International. Retrieved from http://info.eyelighting.com/blog/bid/317097/The-Advantages-of-LED-Street-Lighting
Watkins, T. (n.d.). San Jose State University. Retrieved from http://www.sjsu.edu/faculty/watkins/cba.htm
Wikimedia . (2016, June 21). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/La_Ceiba
Wikimedia. (2016, February 26). Wikipedia. Retrieved from https://es.wikipedia.org/wiki/Carreteras_de_Honduras#CA-13
Wikimedia. (2016, June 1). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Tornado_diagram
Wikimedia Foundation, Inc. (2016, May 2). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Sodium-vapor_lamp
Wu, M., Huang, H., Huang, B., Tang, C., & Cheng, C. (2009). Economic Feasibility of Solar Power LED Roadway Lighting. Renewable Energy, 1934-1938.
指導教授 梁啟源 審核日期 2016-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明