博碩士論文 103353013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:35.175.121.230
姓名 廖思帆(Ssu-Fan,Liao)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 石墨材料時變劣化微結構分析
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響
★ 可程式控制器機構設計之流程研究★ 熱力微照射製作絕緣層矽晶材料之研究
★ 微波活化對被植入於矽中之氫離子之研究★ 矽/石英晶圓鍵合之研究
★ 奈米尺度薄膜轉移技術★ 光能切離矽薄膜之研究
★ 氮矽基鍵合之研究★ 以氫離子擴散機制製作單晶矽薄膜在石英上之研究
★ 矽單晶轉移薄膜層表面埃級平滑化之研究★ 薄膜電性效應對等離子體注入之影響研究
★ 350nm波長光能量輔助矽晶表面光電平滑化★ 異質材料(石英/矽)晶圓鍵合之薄膜應力模擬與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 太陽能電池製程中使用了石墨材料當作載體,在經歷過長時間的使用後,石墨材料表面會因製程溶液的清洗而產生損傷;本研究主要針對石墨材料的表面劣化進行分析,以達成減緩石墨材料損耗為主要目的。
本研究使用氫氟酸、鹽酸與氫氧化鉀等化學溶液,固定溶液濃度與容量,以測微器及光學顯微鏡量測石墨厚度變化及表面孔隙變化,由實驗數據進行石墨的表面孔洞侵蝕率分析。
實驗結果觀察,在5%濃度與500c.c.的溶液設定條件下,使用鹽酸清洗石墨表面氮化矽層相對於氫氟酸與氫氧化鉀,就孔洞侵蝕速率而言,侵蝕速率最慢,孔洞侵蝕率約在1:1.6左右,與業界普遍使用的氫氟酸孔洞侵蝕率1:3.3相比,石墨孔洞侵蝕率縮小了50%,可間接提升石墨載體生命週期,達成減緩石墨材料損耗的目的。
摘要(英) Graphite material is used in solar cell process, when during a long time to use, the material surface will be etched by chemical solution. In this study, we will find how to induce graphite material damage by the surface deterioration analysis.
In this study, HF、HCl and KOH was used as experiment chemicals .Under same concentration and volume in this experiment , graphite’s thickness and aperture size observed by micrometer and optical microscope. The graphite surface hole etch can analyzed by experimental data.
The result of experiments reveals the etching rate of HCl solution was less than that of HF and KOH while experiments condition at concentration 5% and volume 500c.c..The etching rate of HCl solution is ≈1:1.6 less than that of HF etching rate ≈1:3.3,HCl aperture may increase graphite lifetime.
關鍵字(中) ★ 太陽能電池
★ 石墨
★ 侵蝕
關鍵字(英) ★ solar cell
★ graphite
★ etch
論文目次 中文摘要............................Ⅰ
Abstract.......................... Ⅱ
謝誌..................... ........ Ⅲ
目錄............................... Ⅳ
圖目錄..............................Ⅶ
表目錄..............................Ⅸ
第一章 緒論........................ 1
1-1研究動機與目的.................. 1
1-2文獻回顧....................... 3
1-2-1石墨材料應用於製作載體以沉積氮化矽層之相關研究........3
1-2-2氫氟酸應用於表面潔淨之相關研究.....................4
1-2-3鹽酸應用於半導體材料表面潔淨之相關研究....................4
1-2-4氫氧化鉀應用於半導體材料表面潔淨之相關研究............4
1-3研究方法............................................. 5
第二章太陽能電池製程....................................... 6
2-1單、多晶矽太陽能電池製程............................... 6
2-1-1單、多晶矽太陽能電池產業結構說明.................. 14
2-2太陽能電池發電原理.................................... 15
2-2-1太陽能電池能隙帶光波長吸收區段關係..................17
2-3電漿增益化學氣相沉積爐(PECVD)工作原理................... 18
2-3-1電漿原理(Theory of plasma) ................... 18
2-3-2電導率(electric conductivity) ................ 18
2-3-3電導率與溫度的關係...............................19
2-3-4斯涅爾定律(折射定律) ........................... 19
2-3-5空氣與氮化矽層折射關係............................20
2-3-6電漿增益化學氣相沉積爐(PECVD)製程方法..............21
2-4氮化矽侵蝕原理....................................... 22
2-5太陽能電池製程石墨材料應用............................. 23
2-5-1氮化矽層厚度與石墨乘載盤生命週期之關係...................24
2-6光學顯微鏡(Optical Measurement) .................... 26
2-6-1顯微鏡分類.....................................26
2-6-2顯微鏡成像原理..................................26
第三章實驗設備、材料與方法................................. 27
3-1實驗相關設備......................................... 27
3-1-1精密天平.......................................27
3-1-2 PFA量杯..................................... 27
3-1-3 PFA廣口瓶.................................... 28
3-1-4 PFA鑷子...................................... 28
3-1-5電漿增益化學氣相沉積爐(PECVD) ....................28
3-1-6光學顯微鏡(Optical Measurement) ............... 29
3-1-7測微器.........................................30
3-2實驗材料............................................ 31
3-2-1石墨試片.......................................31
3-2-2 實驗製程溶液.................................. 31
3-3實驗方法............................................. 34
3-4實驗流程與量測........................................ 35
3-4-1石墨試片製作....................................36
3-4-2製程溶液調配....................................36
3-4-3測微器厚度量測..................................36
3-4-4 OM孔洞量測................................... 37
3-4-5實驗參數設定....................................37
第四章結果與討論.......................................... 38
4-1 相同濃度之HF、HCl、KOH對石墨板厚度之劣化關係觀察..... 38
4-2 5%濃度之HF對石墨試片孔洞之劣化關係觀察............. 41
4-3 5%濃度之HCl對石墨試片孔洞之劣化關係觀察.............43
4-4 5%濃度之KOH對石墨試片孔洞之劣化關係觀察............ 45
4-5 相同濃度之HF、HCl、KOH對石墨試片孔洞之劣化關係比較... 47
4-6 劣化前、後表面微結構比較.......................... 49
第五章 結論與未來展望...................................... 51
5-1結論................................................ 51
5-2未來展望............................................ 52
附錄一.................................................. 53
附錄二.................................................. 57
附錄三.................................................. 58
參考文獻................................................ 60
參考文獻 1. Johnson, C., T. Wydeven, and K. Donohoe, Plasma-enhanced CVD silicon nitride antireflection coatings for solar cells. Solar Energy, 1983. 31(4): p. 355-358.
2. Gilligan, J., et al., Studies of high heat-flux and runaway electron damage on plasma-facing materials. Journal of Nuclear Materials, 1990. 176: p. 779-785.
3. Hazime, S., S. Shigemi, and G. Yoshitaka, High resolution electron microscopy of graphite defect structures after keV hydrogen ion bombardment at elevated temperatures. Journal of Nuclear Materials, 1990. 176: p. 1000-1004.
4. Kishore, R., S. Singh, and B. Das, PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells. solar energy materials and solar cells, 1992. 26(1): p. 27-35.
5. Pauli, M., et al. A new fabrication method for multicrystalline silicon layers on graphite substrates suited for low-cost thin film solar cells. in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. 1994. IEEE.
6. Watters, V., et al., Development of silicon solar cells and silicon epilayers for photovoltaic applications in South Africa. Renewable energy, 1995. 6(5): p. 607-612.
7. AbdelRassoul, R., Chemical-vapor deposited large-area multicrystalline epitaxial silicon solar cells on upgraded metallurgical silicon/graphite substrates. Renewable energy, 2001. 23(3): p. 399-408.
8. Majumdar, D., et al., Modified technique of using conventional slider boat for liquid phase epitaxy of silicon for solar cell application. Bulletin of Materials Science, 2003. 26(6): p. 643-654.
9. Hauser, A., et al., Influence of an ammonia activation prior to the PECVD SiN deposition on the solar cell performance. Solar energy materials and solar cells, 2003. 75(3): p. 357-362.
10. Burrows, V.A. and J. Yota, A surface ir study of inorganic film formation GaAs, silicon and germanium by aqueous NH 4 F, and HF. Thin Solid Films, 1990. 193: p. 371-381.
11. Ermolieff, A., et al., Surface composition analysis of HF vapour cleaned silicon by X-ray photoelectron spectroscopy. Applied Surface Science, 1991. 48: p. 178-184.
12. Kuiper, A. and E. Lathouwers, Room‐temperature HF vapor‐phase cleaning for low‐pressure chemical vapor deposition of epitaxial Si and SiGe layers. Journal of The Electrochemical Society, 1992. 139(9): p. 2594-2599.
13. Lippold, M., et al., Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF–HNO 3–H 2 SO 4 mixtures. Solar Energy Materials and Solar Cells, 2014. 127: p. 104-110.
14. Kang, M.-G., et al., The characterization of etched GaAs surface with HCl or H 3 PO 4 solutions. Thin Solid Films, 1997. 308: p. 634-642.
15. Habuka, H., H. Tsunoda, and T. Otsuka, Change in microroughness of a silicon surface during in situ cleaning using HF and HCl gases. Journal of the Electrochemical Society, 1998. 145(12): p. 4264-4271.
16. Sun, S., et al., Surface termination and roughness of Ge (100) cleaned by HF and HCl solutions. Applied Physics Letters, 2006. 88(2): p. 021903.
17. Bai-Qing, X., et al., The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors. Chinese Physics Letters, 2012. 29(4): p. 046801.
18. SLAM, M., et al., A comparison of cleaning procedures for removing potassium from wafers exposed to KOH. IEEE transactions on electron devices, 1993. 40(2): p. 292-295.
指導教授 李天錫 審核日期 2016-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明