博碩士論文 103353026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.137.220.120
姓名 徐智鈞(chih-chun Hsu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 精密熱鍛模擬及模具合理化分析
(Precision Hot Forging Simulation and Tooling Analysis of Rationalization)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
★ 複合式類神經網路預測貨櫃船主機油耗★ 新型乾法加工技術構建之高性能超細鑽石砂輪開發研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
  在這項研究中,用於製造軸承環的多級溫鍛工藝數值模擬和實驗分析。該研究的目的是確定精加工鍛造過程,使得模具磨損延長和模具斷裂應該最小化的關鍵站。此外,為了確保所建議的修改是否適當時,執行在每個序列的三維有限元模擬,並謹慎進行實驗研究比較。
軸承內外環精密熱間鍛造製程,以第二道次完成鍛最為重要,並直接影響最終鍛品精度,一般內外環精密熱間鍛造製程常見缺陷有偏料、皺摺、外觀成形不良等問題。透過模擬分析發現鍛造缺陷在製程中發生原因探討,利用有限元素分析預測材料偏移情形、材料流動皺摺原因與材料體積不足引響外觀成形未完全充填等問題。
  數值模擬結果表明,該重新設計的上沖頭的幾何形狀,精密鍛造過程的半徑(R2),顯示完全不同的變形率(有效應變/有效應力分佈)和材料流動形態,與倒角(C2)對應比較。所述數值模型的準確性已經通過與實驗測量比較驗證。此外,數值模擬和實驗驗證過程包括詳細模具設計和尺寸的變化,這是非常重要的在維持鍛模/沖頭的整體結構的完整性,因此,整個過程的穩定性。關於在廢料比率相比,該方法使用的不銹鋼為原料產出內環 /外環,環形式由熱/溫鍛和順序冷軋過程和廢料比率給出減小到〜9%。最後,它表明,在這項研究中的多級溫鍛過程可成功地應用到高批量生產(10,000個/小時)的內環/外環深溝軸承且具有穩定性和結構完整性軸承。
關鍵字:滾珠軸承、熱/溫鍛、有限元素分析、實驗 、整體架構
摘要(英) Abstract
In this study, a multi-stage warm forging process for making bearing rings is numerically and experimentally investigated. The aim of the study is to determine the crucial station of the finishing forging process such that the tool wear is prolonged and tool fracture should be minimized. In addition, in order to ensure the appropriateness of the suggested modification, a 3-dimensional finite element simulation on each sequence is performed, and carefully compared with experimental investigations.
Numerical simulations results indicate that the redesigned upper punch geometry, radius(R2) of the finishing forging process, demonstrates drastically different deformation rate (the effective strain/effective stress distribution) and material flow pattern, as compared with chamfer (C2) counterpart. Accuracy of the numerical models has been verified by comparing with experimental measurements . In addition, the numerically and experimentally validated process includes the detailed tooling design and dimension variation, which is of great importance in maintaining the overall structural integrity of the forging die/punch and thus, the stability of the whole process. Concerning on the waste ratio comparison, the method used steel rods are as raw material and the IR/OR rings form is given by hot/warm forging and sequential cold rolling processes and the waste ratio decreases to ~9%. Finally, it is shown that the multi-stage warm forging process in this study could be successfully applied to the high-quantity production (10,000 pieces/hr) of the IR/OR of the deep groove ball bearing with the stability and structural integratity of the whole process
Keywords: Ball bearing; Hot/Warm forging; Finite element method; Experiment; Structural integrity
關鍵字(中) ★ 滾珠軸承
★ 熱/溫鍛
★ 有限元素分析
★ 實驗
★ 整體架構
關鍵字(英) ★ Ball bearing
★ Hot/Warm forging
★ Finite element method
★ Experiment
★ Structural integrity
論文目次 目 錄
摘要 ................................................................................................................ I
Abstract ............................................................................................................ III
誌 謝 .............................................................................................................. V
目 錄 ............................................................................................................. VI
圖目錄 .......................................................................................................... VIII
表目錄 ............................................................................................................. XI
符號說明 ........................................................................................................ XII
第一章:緒論 .................................................................................................... 1
1-1 前言 ................................................................................................... 1
1-2 文獻探討 ............................................................................................ 2
1-3 熱間鍛造成形概論 ............................................................................ 4
1-4 熱間鍛造成形製程 ............................................................................ 5
1-5 熱間鍛造成形特性 ............................................................................ 7
1-5-1 熱間鍛造成形優點 .................................................................. 8
1-5-2 熱間鍛造成形缺點 .................................................................. 9
1-6 研究動機及方法 .............................................................................. 10
第二章:實驗原理 .......................................................................................... 12
VII
2-1 成形理論 .......................................................................................... 12
2-1-1 鍛造成形組成方程式 ............................................................ 12
第三章:材料與實驗設置 .............................................................................. 13
3-1 實驗材料 .......................................................................................... 13
3-2 實驗設備 .......................................................................................... 14
3-3 鍛造成形模具 .................................................................................. 20
3-3-1 Shearing Workpiece ................................................................ 22
3-3-2 Upsetting Workpiece............................................................... 22
3-3-3 Fully Enclosed Forging Workpiece ......................................... 23
3-3-4 Piercing Workpiece ................................................................. 23
3-4 實驗參數 .......................................................................................... 24
第四章:實驗結果與討論 .............................................................................. 27
4-1 Bearing 成形實驗結果 .................................................................. 27
4-1-1 成形不良實驗結果 ....................................................................... 28
4-1-2 上模沖壓模具實驗結果 ............................................................... 34
4-1-3 模具溫度與鍛壓相關聯性實驗結果 ............................................ 38
4-1-4 模具設計流程合理化 ................................................................... 42
第五章:結論 .................................................................................................. 48
5-1 結論 ................................................................................................. 48
5-2 未來展望 .......................................................................................... 50
參考文獻 ...................................................................................................51
參考文獻 [1] M. Arbak , A. E. Tekkaya , F. Özhan, Comparison of various preforms for hot forging of bearing rings, Journal of Materials Processing Technology, Volume 169, Issue 1, 30 October 2005, Pages 72–82
[2] J. Brändlein, P. Eschmann, L. Hasbargen, K. Weigand, Ball and Roller Bearings: Theory, Design and Application, 3rd Edition, January 1999, 642 pages
[3] Y. Prasad, K.P. Rao, Materials modeling and finite element simulation of isothermal forging of electrolytic copper, Materials & Design Volume 32, Issue 4, April 2011, Pages 1851–1858
[4] E. Z. Kim, S. I. Oh, Y. S. Lee , K.H. Na, Backward can extrusion of ultra-fine-grained bulk Al–Mg alloy fabricated by cryomilling and hydrostatic extrusion, Journal of Materials Processing Technology, Volume 201, Issues 1–3, 26 May 2008, Pages 163–167
[5] A. Kamouneh, Ni. Jun , D. Stephenson, R.Vriesen, G. DeGrace, Diagnosis of involutometric issues in flat rolling of external helical gears through the use of finite-element models, International Journal of Machine Tools and Manufacture,Volume 47, Issues 7–8, June 2007, Pages 1257–1262
[6] T. Kroiß , U. Engel, M. Merklein, Comprehensive approach for process modeling and optimization in cold forging considering interactions between process, tool and press, Journal of Materials Processing Technology ,Volume 213, Issue 7, July 2013, Pages 1118–1127
[7] L.Yuan, Z. Zhao, W. Shi, F. Xu, D. Shan, Isothermal forming of the large-size AZ80A magnesium alloy forging with high mechanical properties, International Journal of Advanced Manufacturing Technology Volume 78, Issue 9, June 2015, pp 2037-2047
[8] G. Faraji, H. Jafarzadeh, H.J. Jeong, M.M. Mashhadi, H.S. Kim, Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy, Materials & Design Volume 35, March 2012, Pages 251–258
[9] T.W. Ku, B.S. Kang, Tool design for inner race cold forging with skew-type cross ball grooves, Journal of Materials Processing Technology, Volume 214, Issue 8, August 2014, Pages 1482–1502
[10] M.C. Lee, S.H. Chung, S.M. Jang, M.S. Joun, Three-dimensional simulation of forging using tetrahedral and hexahedral elements, Finite Elements in Analysis and Design Volume 45, Issue 11, September 2009, Pages 745–754
[11] L. Xinbo, X. Hongsheng, Z. Zhiliang, Flow stress of carbon steel 08F in temperature range of warm-forging. Journal of Materials Processing Technology, Volume 139, Issues 1–3, 20 August 2003, Pages 543–546
[12] H. Ou, J. Lan, C.G. Armstrong, M.A. Price. An FE simulation and optimization approach for the forging of aeroengine components, Journal of Materials Processing Technology, Volume 151, Issues 1–3, 1 September 2004, Pages 208–216
[13] K.T. Wan, K.L. Ho , K.B. Soo, Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints, Materials & Design,Volume 49, August 2013, Pages 368–385
[14] T.W. Ku , L.H. Kim, B.S. Kang, Process Simplification of Multi-Stage Forging for the Outer Race of a CV Joint, Materials and Manufacturing Processes, Volume 29, 2014, Issue 2,
[15] G.J. Kang, J. Kim, B.S. Kang, Numerical and experimental evaluation for elastic deformation of a cold forging tool and workpiece for a sleeve cam of an automobile start motor, Journal of Engineering Manufacture, Volume. 222 ,February 1 2008, no. 2 217-224
[16] I. Puertas, C. Pérez, , D. Salcedo, J. León, J.P. Fuertes, R. Luri, Design and mechanical property analysis of AA1050 turbine blades manufactured by equal channel angular extrusion and isothermal forging, Materials & Design, Volume 52, December 2013, Pages 774–784
[17] L. Juan, C. Zhenshan, Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear, Journal of Materials Processing Technology, Volume 209, Issues 18–19, 19 September 2009, Pages 5871–5880
[18] J. Hongchao , L. Jinping , W. Baoyu , Z. Zhengrong, Z. Tao, H. Zhenghuan , Numerical analysis and experiment on cross wedge rolling and forging for engine valves, Journal of Materials Processing Technology, Volume 221, July 2015, Pages 233–242
[19] M.Duarte, H. Martins, Inner Joint Forming and Pullout Simulation Using Finite Element Analysis, SAE Technical Paper, 2004-01-3422
[20] W.L. Chan, M.W. Fu, J. Lu, Experimental and simulation study of deformation behavior in micro compound extrusion process, Materials & Design, Volume 32, Issue 2, February 2011, Pages 525–534
[21] L. Lavtar , T. Muhič, G. Kugler, M. Terčelj, Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms, Engineering Failure Analysis, Volume 18, Issue 4, June 2011, Pages 1143–1152
[22] M.C. Lee, S.H. Chung, S.M. Jang, M.S. Joun, Three-dimensional simulation of forging using tetrahedral and hexahedral elements, Finite Elements in Analysis and Design, Volume 45, Issue 11, September 2009, Pages 745–754
[23] Murat Arbak ,Comparison of various preforms for hot forging of bearing rings , November 2004, Pages 74
[24] Mikell .P , Groover, Principles of Modern Manufacturing , SI Version , January 2013 , Pages 365-384
[25]Dr. Pulak , M. Pandey , Metal Forming Processes,
http://web.iitd.ac.in/~pmpandey/MEL120_html/Metal%20Forming%20Processes.pdf , Pages 22
[26] Florian .Hoppe, M. Sc, Production of profiles having a variable cross section lengthwise by flexible roll-forming,
http://www.ptu.tu-darmstadt.de/mu_forschung/mu_prozesskettenundanlagen/abgeschlossene_forschungsprojekte_pa/menu_flexibleswalzprofilieren/index.en.jsp
[27] Chung. Yi. Huang,Investingation of tooling wear and forging defects in precision hot forging process as used by deep groove ball baaring , 2014, Pages 14–58
[28] Copyright Wonkee Donkee Design by Gloversure 2016, http://www.wonkeedonkeetools.co.uk/compression-fitting-spanner/what-are-compression-fitting-spanners-made-of/,stage2
[29] 株式会社天辻鋼球製作所, http://www.aksball.co.jp/product/steel-balls-for-rolling-bearings/
[30] JIS G 4805 seamless pipe high carbon chromium bearing steel pipe, JIS G4805 ,1990, http://www.tubesolution.com/standard/JIS/JIS%20G4805.pdf
[31]Jia.Mao. Li,5XXX鋁合金氣壓成形皺摺研究The Wrinkle Research For Gas Forming5XXX Aluminum,, 2014, Pages 106–107
[32] Chih.Chun. Hsu, Numerical analysis and experimental validation on multi-stage warm orging process of deep groove ball bearing---a modified punch geometry with microstructure and defect analysis, submitted, Pages 7
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2016-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明