博碩士論文 103356010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.21.104.109
姓名 邱相禎(Hsiang-Chen Chiu)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 不同改良劑對污染土壤中重金屬植物有效性之影響
(Effect of Various soil Amendments on Phytoavailability in Copper and Zinc Contaminated Soils)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於工業廢水與灌溉水搭排下,導致土壤及地下水污染,使台灣農田污染事件層出不窮,污染超出土壤涵容能力,其中重金屬銅、鋅污染尤甚。植生復育(Phytoextraction)為重金屬污染土壤之復育技術,相較傳統物理、化學整治技術,對環境生態更具友善性、且具較佳之成本效益性。利用重金屬超累積植物(Hyperaccumulator)吸收污染物,藉由植物累積(Phytoaccumulation)再移除植物進行焚化固化等後續處理,可降低整治產生廢棄物量與防止二次污染。
本試驗選用台灣污染區試種過之植物,分別為非洲鳳仙(Impatiens walleriana Hook. f.)及向日葵(Helianthus annuus Linn),種植於受銅、鋅污染的圓墩坡系Yp與和美系Hm土壤經摻入不同改良劑:CK對照、L石灰、O堆肥、R稻稈、A草灰、RL稻稈+石灰、RO稻稈+堆肥、AL草灰+石灰、AO草灰+堆肥等不同施作方式,經種植60天後分析植體與土壤間重金屬累積之關係。
試驗結果於圓墩坡系污染土壤種植非洲鳳仙與向日葵以吸收鋅為主,如未添加改良劑之非洲鳳仙受土壤中數種重金屬污染產生毒害症狀導致死亡,圓墩坡系摻入AL草灰+石灰與單獨加入L石灰種植非洲鳳仙可提高土壤pH值與大幅增加植體吸收鋅,尤其加入L石灰整株非洲鳳仙鋅移除量達11,939.5mg/kg(達到超級累積植物標準10,000mg/kg);圓墩坡系種植向日葵則因重金屬濃度過高或多種重金屬同時存在導致高達5種處理造成向日葵死亡,重金屬銅、鋅移除量不如非洲鳳仙。
和美系污染土壤種植非洲鳳仙鋅累積量大多存於根部,鋅移除量以未添加CK對照最高,顯示鋅污染之坋質黏壤土種植非洲鳳仙,即使不添加改良劑也有移除鋅之功效,和美系種植向日葵之污染土壤鋅累積於地上部,最高鋅總移除量為未添加CK對照2865.8 mg/kg與O堆肥2680.0 mg/kg,向日葵鋅總移除量為非洲鳳仙鋅移除量4倍(鋅總移除為CK對照670.7 mg/kg),添加改良劑不會促進非洲鳳仙與向日葵鋅總吸收量,若以美化環境需求建議種植向日葵。和美系污染土壤種植向日葵,銅移除量最高為未添加CK對照358.4 mg/kg,添加改良劑不會促進銅吸收量,但種植非洲鳳仙以添加O堆肥651.6 mg/kg、RL稻稈+石灰647.7 mg/kg移除量最高,且非洲鳳仙銅移除量為向日葵移除量2倍,建議和美系受銅污染之土壤可摻入O堆肥或RL稻稈+石灰栽種非洲鳳仙。
摘要(英) The discharging of industrial effluent into irrigation system results in the high risk of soil and groundwater pollution,such as copper and zinc pollutants which triggers the endless incidents of farmland pollution in Taiwan. Phytoextraction is one of the soil remediation technologies. Compared with the traditional physical and chemical controlling technology, phytoextraction is More friendly to the environment and ecology, and has better cost effectiveness. The usage of heavy metal hyperaccumulator for uptaking pollutants and the removing of plants for incineration and consolidation by phytoaccumulation can reduce and control the produced waste as well as prevent secondary pollution.
This experiment selects the plants that have been planted in contaminated areas of Taiwan, namely impatiens (Impatiens walleriana Hook. f.) and sunflowers (Helianthus annuus Linn). The plnts are cultivated in the Yantunpo(Yp) and Homei(Hm) soil contaminated by Cu and Zn soil. Soil amendments treatments were as following:control group (CK), lime (L), compost (O), rice straw (R), plant ash (A), rice straw and lime (RL), rice straw and compost (RO), plant ash and lime (AL), as well as plant ash and compost (AO). After 60 days of planting, the soil and plants will both analyze the content of Cu and Zn to realize the relationship between the plants and the contaminated soils.
The results show that plants of impatiens and sunflowers in the Yp contaminated soils mainly uptake Zn. The treatments without adding improvers to the contaminated soils, Impatiens are not survival in the experiment due to the poison of heavy metals. In the Yp soil, treatments with plant ash and lime (AL) and lime (L) can raise the soil pH and substantial increase the Zn uptaked by the impatiens. In particular, the removal of Zn in the whole Impatiens plants treated with lime (L) is up to 11,939.5mg/kg (This meets the hyperaccumulator standard of over 10,000mg/kg). For the sunflowers planted in the Yp soil, the high concentration of heavy metals or various heavy metals exist at the same time cause the death of sunflowers with five different amendment treatments. The removal of Cu and Zn of sunflowers is lower than that of impatiens.
In this experiment, Zn was mostly stores in the impatiens roots planted in the Hm soil, and the highest Zn removal is the control group (CK). It is shown that the impatiens planted in the silty clay loam contaminated by Zn has the effect of removing Zn even without adding improvers. The sunflowers tend to accumulate Zn on the shoot parts planted in the contaminated Hm soil. The highest total removal of Zn is control group (CK) 2865.8 mg/kg and Compost (O) 2680.0 mg/kg. The total removal of Zn by sunflowers is four times as much then that of impatiens. (The total removal of Zn is control group (CK) 670.7 mg/kg). Adding improvers does not increase the total removal of Zn of impatiens and sunflowers. It is recommended to plant sunflowers for decorating the environment. The highest removal of Cu of sunflowers planted in the contaminated Hm soil is control group (CK) 358.4 mg/kg, which means that the adding improvers cannot promote the uptaking of Cu. The highest removal of Cu of impatiens is compost (O) 651.6 mg/kg and rice straw and lime (RL) 647.7 mg/kg. Furthermore, the removal of Cu by impatiens is twice as much as that of sunflowers. Therefore, it is recommended that the Hm soil contaminated by Cu can add compost (O) or rice and lime (RL) for planting Impatiens.
關鍵字(中) ★ 植生復育
★ 銅
★ 鋅
★ 非洲鳳仙
★ 向日葵
★ 植物累積
關鍵字(英) ★ Phytoextraction
★ Copper
★ Zinc
★ Impatiens
★ Sunflowers
★ Phytoaccumulation
論文目次 目 錄
目次 頁次
目錄…………………………………………………………………........... I
圖目錄………………………………………………………………........... V
表目錄………………………………………………………………........... VIII

第一章 前言………………………………………………………………. 1

1-1 研究緣起………………………………………………… 1
1-2 研究目的…………………...……………………………. 2

第二章 文獻回顧…………………………………………………………. 3

2-1 土壤中重金屬來源………………...……………….…… 3
2-1-1 重金屬污染標準………………………………... 6
2-2 台灣污染土壤列管現況………………...………………. 7
2-2-1 重金屬來源與危害……………...……………… 7
2-2-2 重金屬污染調查與列管概況…………………... 8
2-3 土壤中重金屬型態與移動特性………………………… 20
2-3-1 重金屬在土壤中型態…………………………... 20
2-3-2 重金屬在土壤中移動特性……………………... 22
2-4 重金屬污染整治技術…………………………………… 25
2-4-1 化學/物理技術………………………………….. 27
2-4-2 工程技術………………………………………... 28
2-4-3 生物技術………………………………………... 29
2-4-3-1 植生復育植物特性………………….. 29
2-4-3-2 植生復育處理機制………………….. 30
2-4-3-3 植物對重金屬可能的反應機制與關係 31

第三章 材料與方法………...…………………………………………….. 33

3-1 試驗土壤………………...………………………………. 33
3-1-1 桃園土壤………………...……………..………. 33
3-1-2 彰化土壤………………...……………..………. 33
3-1-3 改良劑………………………………………….. 35
3-2 試驗藥品………………………………………………… 35
3-3 試驗設備………………………………………………… 36
3-4 試驗土壤基本性質分析………………………………… 40
3-4-1 土壤pH值:玻璃電極測量法………………… 40
3-4-2 電導度………………...……….……………….. 41
3-4-3 風乾土含水量:重量法……….……………….. 41
3-4-4 土壤質地:吸管法………...……………………. 41
3-4-5 土壤有機碳含量: Walkley-Black濕式氧化法… 41
3-4-6 土壤重金屬全量:王水消化法………………… 45
3-4-7 土壤重金屬生物有效性濃度:0.05 M EDTA(pH 7.0)萃取法………………………….. 48
3-4-8 土壤重金屬生物有效性濃度:0.1 M HCl……... 48
3-4-9 石灰需要量:SMP 方法………………………... 48
3-4-10 植體重金屬…………………………………….. 49
3-5 試驗設計與處理………………………………………… 51
3-5-1 試驗土壤製備…………………………………... 51
3-5-2 試驗改良劑……………………………………... 52
3-5-3 植體前處理……………………………………... 54

第四章 結果與討論………………………………………………………. 55

4-1 土壤基本理化特性……………………………………… 55
4-1-1 桃園土壤………………………………………... 55
4-1-2 彰化土壤………………………………………... 55
4-1-3 試驗改良劑性質………………………………... 56
4-2 施用不同改良劑對土壤理化性質之影響……………… 57
4-2-1 土壤pH與電導度………………………………. 57
4-2-2 土壤有機質含量………………………………... 62
4-2-3 植物之金屬有效性…………………………….. 65
4-3 施用不同改良劑對非洲鳳仙之影響…………………… 69
4-3-1 不同改良劑與不同土壤對非洲鳳仙生長之影響 69
4-3-2 施用不同改良劑與植物中金屬濃度之關係……. 75
4-3-3 不同土壤對植物中金屬累積與生長之影響…… 78
4-3-4 施用不同量改良劑之結果比較………….……... 83
4-4 施用不同改良劑對向日葵之影響………………………. 87
4-4-1 不同改良劑與不同土壤對向日葵生長之影響 87
4-4-2 施用不同改良劑對植物不同部位銅累積濃度之關係………………………………………………... 91
4-4-3 施用不同改良劑對植物不同部位鋅累積濃度之關係………………………………………………... 95
4-4-4 改良劑施用不同量的效果比較………………….. 98
4-5 不同植物利用於植生復育之效益評析…………………… 102
4-5-1 重金屬總移除量………………………………….. 102
4-5-2 施用改良劑效應與植生復育經費評估…………. 108

第五章 結論與建議…………………………………………………………. 110

5-1 結論………………………………………………………… 110
5-2 建議………………………………………………………… 111

參考文獻…………………………………………………………….............. 112
參考文獻 1. 翁震炘,農作物重金屬污染監測與管制措施,農糧署農業資材組,第169期,95年7月 
2. Ure, A.M. 1995 Methods of analysis for heavy metals in soils, In Alloway, B.J ,Heavy Metals in Soils 2nd Edition, Blackie Academic & Professional, London, pp. 58-102.
3. Allaway,W.H. 1968 Adv. Agron 20:240-243
4. Bohn, H.L., B.L. McNeal and G.A. O′Connor: Soil Chemistry. 2. Auflage, 341 S., John Wiley a. Sons, New York, Chichester (1985)
5. 行政院環境保護署。2011。土壤污染管制標準。中華民國一百年一月三十一日。
6. 行政院環境保護署。2011。土壤污染監測標準。中華民國一百年一月三十一日。
7. 王一雄*、陳尊賢、李達源 (著)。1995。土壤污染學。國立空中大學印行。台北市。281頁。
8. 行政院環境保護署,全國重金屬高污染潛勢農地之管制及調查計畫第2期,2014。
9. 行政院環境保護署,2000a,台灣地區土壤重金屬含量等級區分表。
10. 行政院環境保護署,2002c,農地土壤重金屬調查與場址列管計畫(111公頃)
11. 行政院環境保護署,2002d,319公頃農地土壤重金屬調查與場址列管計畫。
12. 行政院環境保護署,2002e,農地土壤重金屬調查與場址列管計畫(100公頃)
13. 土壤及地下水污染整治網- 國內污染場址查詢https://sgw.epa.gov.tw/ContaminatedSitesMap/Default.aspx
14. Lindsay, W.L. 1979. Chemical Equilibrium in Soils. John Wiley & Sons, New York.
15. Shuman, L.M. 1979. Zn, Mn and Cu in soil fractions. Soil Sci. 127:10–17.
16. McBride, M. B. 1994. “Environmental Chemistry of Soils.” Oxford University Press, New York.
17. Mattigod, S. V., and G. Sposito. 1979. Chemical modeling of trace metal equilibria in contaminated soil solutions using the computer program GE0CHEM. p. 837-856. In E. A. Jenne (ed.), Chemical modeling in aqueous systems -- Speciation, sorption, solubility, and kinetics. ACS Symposium Series No. 93. American Chem.
18. 王一雄。1997。土壤環境污染與農藥。國家圖書館出版。
19. Kabata-Pendias A, Pendias H ,2001, Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, Fla, USA.
20. Fox T.C., Guerinot M.L.MOLECULAR BIOLOGY OF CATION TRANSPORT IN PLANTS. 1998 Jun;49:669-696
21. 張尊國,1991,受重金屬污染土壤復育技術之研究—土壤淋洗,行政院環境保護署委託計畫報告 EPA—80-E3H1-09-04。
22. 葉琮裕,2003,重金屬污染農地整治,工業污染防治季刊,第84期。
23. 駱尚廉、張尊國,1998,土壤受重金屬污染場址復育技術之研究,行政院國家科學委員會專題研究中興計畫成果報告,國立台灣大學環境工程研究所。
24. 洪肇嘉,1993,電動法清除土壤中污染重金屬之研究,第八屆廢棄物處理技術研討,1993/11/28,台北(中華民國環境工程學會) ,p. 563~569。
25. 翁誌煌、林裕雄、陳耀升,1997,「以電滲透法處理受鎘污染之土壤」,第五屆土壤污染防治研討會論文集,台北,第323-342頁。
26. 薩支高、陳俊溢,1996,「以電動法復育酸化處理經鎘及鉛添加之土壤及其金屬形態變化情形」,第十一屆廢棄物處理技術研討會論文集,台北,第563-573頁。
27. 張添晉、陳尊賢、章裕民等,1997,「土壤污染改善技術參考指引」彙編。
28. 賴鴻裕、陳尊賢,2003,重金屬污染土壤之植生復育技術與案例分析,第8屆土壤及地下水污染整治研討會論文集。
29. 中華民國環境工程學會。2002,環境工程概論。
30. 車明道,1993,「土壤復育技術介紹及有效性評估」,能源、資源與環境 6:3=23 民82.08 P.41-46。
31. 行政院環保署,「重金屬污染農地管理及改善技術評析計畫」,P.60-P.86,2015。
32. Ensley, B. D. Rationale for use of phytoremediation. pp. 3-11. In Raskin,I., and B. D. Ensley. (ed.) Phytoremediation of toxic metals. John Wiley & SonsInc., NY, USA. 2015.
33. Dushenkov , P. B. A. Nanda. Kumar , Harry. Motto , and Ilya. Raskin. Environmental Science & Technology,Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams. Viatcheslav.29 (5), 1239-1245,1995
34. Baker AJM,S P,MeGrath,R D Reeves,et al.Metal hyperaccumulator plants A review of the ecology and physiology of a biochemical resonrce for phytoremediation of metal-polluted soil[C]//Terry N,Ba(n)uelos G,Vangronsveld J.Phytoremediation of contaminated soil and water.Florida lewis publishers,Boca Raton,2000:85-1071
35. Baker AJM ,Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654 .1981.
36. Chaney, R.L, M. Malik, Y.M. Li, S.L. Brown, J.S. Angle and A.J.M. Baker. 1997. Phytoremediation of soil metals. Current Opinions in Biotechnology 8:279-284.
37. 李芷儀,以植生復育技術處理受重金屬銅、鉻與鎳污染土壤之研究,嘉南藥理科技大學環境工程與科學系碩士論文,2009。
38. Jabeen, R., A. Ahmad and M. Iqbal Phytoremediation of heavy metals: physiological and molecular mechanisms. Botanical Review 75: 339-364.2009.
39. Nogals, R., F. Gallardo-Lara, E. Benitez, J. Soto, D. Hervas, and A. Polo. 1997. Metal extractability and availability in a soil after heavy application of either nickel or lead in different forms. Water Air Soil Pollut. 94:33-44.
40. Lagerwerff, J.V., and G.T. Biersdorff. 1972. Interaction of zinc with uptake and translocation of cadmium in redish. p. 515. In D.D. Hemphill (ed.) Trace Subst. Environ. Health. University of Missouri, Columbia, USA.
41. 行政院農業委員會農業試驗所,桃園縣土壤調查報告,1976。
42. Mclean, E.O. Soil pH and Lime Requirement. In Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 199-224(1982).
43. Rhoades, JD.Soluble salts. Methods of soil analysis. Part 2: Chemical and microbiological properties 167–180 Page, AL, Miller, RH, Keeney, DR Madison WI Soil Science Society of America, 1982.
44. Gardner, W.H. Water content. In: Methods of constant. The readout from the probe is not linear. Soil Analysis. Part 1. Physical and Mineralogical with water content and is influenced by soil type and. Methods (Klute,A.,ed). Agronomy Series No. 9,1986.
45. Gee, G.W. and Bauder, J.W. Particle-size analysis. In Klute, I.I., Ed., Methods of Soil Analysis, Soil Science Society of America, Madison, 383-412,1986.
46. Nelson, D.W. and L.E. Sommers. Total. Carbon, Organic Carbon and Organic Matter. In: Sparks D.L. et al. (Ed.) Methods of soil analysis. Part 3. Chemical Methods. SSSA Book Ser. 5. SSSA,. Madison, WI. pp: 961–1010. Walkley, A. and I.A. Black,1996.
47. 行政院環保署環檢所,土壤中重金屬檢測方法-微波輔助王水消化法(NIEA S301.60B)。中華民國104年4月15日生效。環署檢字第1040003247 號公告。
48. Mench, M.J. V.L. Didier; M. Loffer; A. Gomez and P. Masson. 1994. A mimicked In situ Remediation study of metal contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23, 58-63.
49. 行政院環保署環檢所。土壤中鎘、鉻、銅、鎳、鉛及鋅檢測方法-0.1M鹽酸部分萃取火焰式原子吸收光譜法(NIEA S320.60T)。中華民國80年3月18日生效。環署檢字第27038號公告。
50. H.E. Shoemaker, E.O. McLean, P.F. PrattBuffer methods for determining lime requirement of soils with appreciable amounts of extractable aluminium. Proc. Soil Sci. Soc. Amer., 25 (1961), pp. 274-278.
51. 衛生福利部食品藥物管理署。食品中六價鉻之檢驗方法(TFDAH0004.01) 中華民國105年2月25日生效。
52. Blaylock, M.J. D.E. Salt, S. Dushenkov, O. Zakharova,. C. Gussman, Y. Kapulnik, B.D. Ensley and I. Raskin,. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860-865
53. 國立中興大學農學院土壤學系,彰化縣土壤調查報告,1969。
54. 陳仁炫,鹽害土壤的問題及其改良對策,農藥世界,116:P.71-87,1993.
55. Selenium in Agriculture and the Environment. Jacobs, L. W.. Soil Science: February 1990 - Volume 149 - Issue 2 - ppg 121
56. 李豔琪、王銀波,銅污染台灣各類土壤與作物生長關係之研究,第三屆土壤污染防治研討會論文集,台中,第309-323頁,1992。
57. Kofoed, A.D. 1980. Copper and its utilisation in Danish agriculture. Fertilizer Research 1: 63–71.
58. 王銀波,重金屬鉻、銅、鋅、鎘、鉛對作物毒性之研究,公害對農業生產之影響研討會論文集, p.105-118,1985。
59. Kabata-Pendias, A. and Pendias, H.Trace Elements in Soils and Plants. 3rd Edition, CRC Press, Boca Raton,FL,USA.p.73-98,2001.
60. Chaney, R. L., and P. M. Giordano. Microelements as related to plant deficiencies and toxicities. p. 235-279. In L. F. Elliott and F. J. Stevenson (eds.) Soils for management of organic wastes and waste waters. American Society of Agronomy Madison, Wisconsion,1977.
61. Luo, C. L., Shen, Z. G. and Li, X. D, Enhanced phyto-extraction of Cu, Pb, Zn and Cd with EDTA and EDDS, Chemosphere, Vol. 59, pp. 1-11,2005.
62. 李豔琪,銅、鉛污染不同土類對作物之影響,國立中興大學土壤學研究所碩士論文,1989。
63. 魏樹和,楊傳傑,周啟星。三葉鬼針草等7種常見菊科雜草植物對重金屬的超富集特徵。環境科學,29(10):2912 – 2918,2008。
64. Sun,Y.B.,Zhou,Q.X.,Wang,L.and Liu,W.T.,2009,Cadmium tolerance and accumulation characteristics of Bidens Pilosa L.as a potential Cd-hyperaccumulator,J. Hazard. Mater., Vol. 161, pp. 808-814.
65. Tang, M. D., Hu, F., Wu, L. H., Luo, Y., M., Jiang, Y. G., Tan,C. Y., Li, N., Li, Z. G. and Zhang, L. X., 2009, Effects of copper-enriched composts applied to copper-deficient soil on the yield and copper and zinc uptake of wheat, Int.J. Phytoremediat., Vol. 11, pp. 81-93.
66. Gu HH, Qiu H, Tian T, Zhan SS, Deng THB, Chaney RL, Wang SZ, Tang YT, Morel JL, Qiu RL. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere [05 Apr 2011, 83(9):1234-1240]
67. Fellet, G., Marchiol, L., Perosab, D., and Zerbia, G. (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders.Ecological Engineering, 31, 207-214
68. US EPA. 2000. Evaluation of phytoremediation technologies. p.14-40. In US EPA (ed.). Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Ohio, USA.
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明