博碩士論文 103356018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.238.174.50
姓名 林慧如(Hui-Ju Lin)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 太陽能電池廠廢水中氨氮之削減研究
(A Study on Reduction of Ammonia Nitrogen Wastewater of Solar Cell Plant)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-29以後開放)
摘要(中) 太陽能電池廠製程氨氮廢水為單一產出源,源自CVD製程使用的氨氣,製程廢氣經CVD機台附屬設備洗滌處理後形成氨氮廢水,廢水中氨氮濃度相對偏低且變化劇烈,濃度介於236 ~ 910mg/ L,同時CVD製程因使用SiH4導致廢水中含大量粒狀SiO2汙染物。
本研究運用MD膜組選擇性功能來分餾萃取製程廢水中的氨氮,並以硫酸吸附成為硫酸銨,研究結果顯示,氨氮廢水pH調升至11.4後,氨氮(NH4+ )與游離氨(NH3(g))轉態率達99%,提高氨氮廢水溫度可增加轉態率,但溫度提升會增加操作成本,加溫僅適用於季節低溫時維持廢水溫度已保持系統處理效能。
硫酸最適合操作區間為pH = 2 ~ pH =3區間, 氨氮濃度界於323 ~ 448 mg/L低濃度區間時,低於循環硫酸流量與氨氮廢水流量最適操作比為2:1,氨氮濃度界於672 ~ 1,210 mg/L高濃度區間時則須操作於1:1,以降低水分滲透MD速率,以使硫酸銨產出比重可提升到22~24%;低濃度區間流量比越高系統處理效率越高,高濃度區間則呈相反結果,流量比提升後會因水分競爭因素導致游離氨穿透MD膜空間不足,系統處理效率相對降低。
串聯兩組MD後系統高處理效率可高達99%,與pH =11.4的氨氮(NH4+ )與游離氨(NH3(g))轉態率99%完全一致,顯示滯留時間充足且各項操作條件控制得宜,MD處理系統的效能極高,非常適用於處理太陽能製程氨氮廢水。
摘要(英) The NH3-N wastewater in the process of solar cell plant is generated from single source, N2 used in CVD process. The waste gas generated in the process forms NH3-N wastewater after washed by the auxiliary equipment of CVD machine. With drastic change, the ammonia nitrogen concentration in the wastewater is relatively low in the range of 236 ~ 910mg/ L. Moreover, the wastewater contains large amount of SiO2 pollutant because SiH4 is used in CVD process.
The study applies the selective function of MD film module for fractional extraction of NH3-N contained in the wastewater, which is then adsorbed by H2SO4to form (NH4)2SO4. As shown in the results, after the addition of ammonia nitrogen wastewater pH value raises to 11.4, the transition rate of NH 4+ and and and NH 3(g)3(g) 3(g) may reach may reach may reach may reach may reach may reach may reach 99% , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature , which may be increased with the temperature of of ammonia nitrogen wastewater. However, the temperature increase will add operation cost. Heating is only applicable to maintain the temperature of wastewater during seasons with low temperature, so as to retain the system processing performance.
The optimal operation range for H2SO4 is pH = 2 ~ pH =3. When the NH3-N concentration is within the low range of 323 ~ 448 mg/L, the optimal operation ratio lower than the cyclic H2SO4 flow and NH3-N waste water flow is 2:1. When the ammonia nitrogen concentration is within the high range of 672 ~ 1,210 mg/L, the operation ratio is 1:1. This can decelerate the water permeating MD, and increase the output proportion of (NH4)2SO4 to 22~24%. Higher the flow ratio within the low concentration range will result in higher system processing efficiency, and vice versa. When the flow ratio is increased, it will result in insufficient space for NH 3(g)3(g) 3(g) to permeate MD film due to the water
competition factor, and the system processing efficiency will be lowered accordingly.
After serial connection of two MDs, the system processing efficiency can reach as high as 99%, which is completely consistent with the transition rate of NH 4+ and NH 3(g)3(g) 3(g) under pH =11.4. It may provide sufficient retention time and control various operation conditions properly. Moreover, it may get extremely high efficiency of MD processing system. So it is quite suitable to the treatment of ammonia nitrogen wastewater in the solar process.
關鍵字(中) ★ 太陽能製程
★ 氨氮廢水
★ MD膜組
關鍵字(英) ★ Solar Process
★ Ammonia Nitrogen Wastewater
★ MD Film Module
論文目次 目次 頁次
目錄…………………………………………………………………...I
圖目錄………………………………………………………………...IV
表目錄………………………………………………………………...VII
第一章 前言……………………………………………………………1
1-1
研究緣起…………………………………………………1
1-2
研究目的 ………… ………… ………… ……… ... …………… …………… ………………. ……………….6
第二章 文獻回顧………………………………………………………
9
2-1
矽晶圓太陽能電池簡介………………...…………….…9
2-1-1
矽晶圓太陽能電池發電原理…………………..9
2-1-2
矽晶圓太陽能製程流程………………………..10
2-1-3
矽晶圓太陽能製程說明………………………..11
2-2
矽晶圓太陽能電池廠廢水特性…………………………13
2-2-1
矽晶圓太陽能電池廠廢水分類……………….14
2-2-2
矽晶圓太陽能電池廠氨氮廢水特性..…………15
2-3
氨氮廢水處理方法……………………………………..16
2-3-1
氣提法……………………………......................16
2-3-2
離子交換法……………………………………..19
2-3-3
生物處理法之硝化、脫硝……………………..20
II
2-4
國內相關法規管制………………...…………...............25
2-4-1
放流水管制標準………………………………..26
2-4-2
全國各科學園區納管標準與管制時程………29
第三章 研究方法……………………………………………..………33
3-1
實驗材料………………...……………………...……….33
3-2
實驗儀器與設備……………...………………………….33
3-2-1
實驗儀器………………...……………..………33
3-2-2
MD (Membrane Distillation)膜組單元…………36
3-2-2-1
MD膜組發展與運用………………………37
3-2-2-2
膜組處理原理………………………………39
3-2-3
系統架構與控制參數………...………………..41
3-3
實驗流程及方法………………...………………………43
3-3-1
氨氮(液) / 氨氣(氣)轉換率研究流程…………43
3-3-2
MD膜組處理法研究流程………...……………47
第四章 結果與討論……………………………………………………
50
4-1
水質特性…………………………………………………50
4-2
氨氮(液) / 氨氣(氣)轉換率……………………………54
4-2-1
不同 pH條件下的轉換率……………………54
4-2-2
水體溫度調整對轉換率的影響………………56
4-2-3
膜組選擇性功能驗證…………………………59
4-3
吸附劑硫酸主要操作因子……………………………62
4-3-1
循環硫酸pH控制………………………………62
III
4-3-1-1
pH終端條件………………………………62
4-3-1-2
系統處理效能……………………………64
4-3-1-3
水分滲透速率……………………………66
4-3-2
硫酸循環流量與氨氮廢水流量比……………..67
4-3-2-1
處理效能………………………………….68
4-3-2-2
水分滲透速率……………………………70
4-3-2-3
硫酸銨產出濃度(氨氮移轉及濃縮倍數)...71
4-4
氨氮廢水濃縮……………………………………………
75
4-4-1
濃度提升後硫酸pH對系統之影響……………78
4-4-2
濃度提升後流量比對系統之影響…………..80
4-4-2-1
水分滲透速率……………………………..80
4-4-2-2
系統處理效能……………………………82
4-4-3
氨氮濃度改變與處理效率…………………….84
4-4-4
滯留時間與處理效率………………………….89
4-5
MD處理法經濟效益評析………………………………93
4-5-1
膜分離技術與其他方法比較…………………..95
第五章 結論與建議……………………………………………………99
5-1
結論………………………………………………………99
5-2
建議………………………………………………………100
參考文獻……………………………………………………………...101
參考文獻 1. 傅崇德,氨氮管制之現況及處理技術展望,環保簡訊第20期。
2. 李中光、劉新校、侯佳蕙, 淺談物理化學法在處理氨氮廢水上之應用,環保簡訊第21期。
3. 周珊珊,氨氮廢水處理實務:問題與對策。
4. 環保署,環境水質監測年報。
5. 環保署,產業廢水污染調查及管制措施研議計畫(第一年),環保專案成果報告查詢系統,2009。
6. 環保署,產業廢水污染調查及管制措施研議計畫(第二年),環保專案成果報告查詢系統,2010。
7. 環保署,產業廢水污染調查及管制措施研議計畫(第三年),環保專案成果報告查詢系統,2011。
8. 環保署,事業廢水特性調查及污染管制措施研議計畫,環保專案成果報告查詢系統,2012。
9. 產業廢水污染特性調查及自我削減推動計畫環保專案成果報告查詢系統,2008。
10. 王昊&周康根,氨氮廢水的幾種處理技術,工業安全與環保,2006。
11. Lind B, Ban Z, Byden S. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresources Technol. 73 (2000) .
12. Rozic M,Stefanovic S C,Kurajica S,et al. Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Res. 34(14) (2000) .
13. 蔡文賢,缺氧-好氧生物除氮程序之操作特性研究,輔英科技大學環境工程所,2006。
102
14. 陳睿斌,應用分子生物技術進行生物處理程序菌相分析之研究,國立中央大學,2001。
15. 李中光、劉新校、邱惠敏,淺談氨氮廢水處理技術,環保簡訊第26期。
16. 龍德屏,氮素循環,2011。
17. Sliekers, A., Third, K.A., Abma, W., Kuenen, J.G. and Jetten, M.S.M., 2001,“CANON and Anammox in a Gas-lift Reactor”, FEMS Microbiology Letters,vol. 218, No. 2.
18. Jetten, M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G. and Strous,M., 2001, “Microbiology and application of the anaerobic ammonium oxidation (′anammox′) process”, Current Opinion in Biotechnology, vol. 12,No. 3.
19. 環保署,環保法規查詢系統。
指導教授 李俊福(Jun-fu Li) 審核日期 2016-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明