摘要(英) |
CMP(chemical mechanical polishing) is an important process in semiconductor industry. Both of polishing slurry and post cleaning result in high turbidity of CMP wastewater. CMP particles are in nano scale and have high zeta potentials, which are difficult to remove by coagulation and flocculation. In this study, chemical coagulation treatment of mixing silica and alumina oxide CMP wastewater was studied.
The wastewater was prepared by diluting silica and aluminum oxide (Al2O3) slurries to 200 times. Effects of mixing ratio on coagulation were examined by 100% silica, 70% silica and 30% Al2O3, and 50% silica and 50% Al2O3. It was found that the residual turbidity was the lowest when the solution pH was 7 and increased with increasing pH. Also, when the solution pH was 7 and PACl was 600 ppm, the residual turbidity increasing with increasing amount of Al2O3, which is because the Al2O3 slurry had much higher turbidity.
Effects of the mixing ratio of cationic and anionic polymers on the removal of turbidity, suspended solids (TSS), chemical oxygen demands (COD),and particle size distribution were also investigated. It was found that the dosing of cationic and anionic polymer was greatly dependent on the ratio of silica and Al2O3. The TSS was higher when there were more Al2O3 nanoparticles, which was because the particle size of Al2O3 was larger than the pore size of the filter (0.1 m) and the density of Al2O3 was higher than that of silica.
In general, higher ratio of Al2O3 leaded to higher residual turbidity though the removal efficiencies for three mixing ratio of silica and Al2O3 were similar. It is suggested that when there are two different CMP nanoparticles in wastewater, 70% silica and 30% Al2O3 would have better coagulation performance. |
參考文獻 |
1.戴寶通,「化學機械研磨技術積體電路製造關鍵技術」,工業材料,Vol 37,pp.26-29(1996)。
2.蔣本基,「工業污染防治技術手冊」,經濟部(1990)。
3.張俊彥,「積體電路製程及設備技術手冊」,經濟部(1997)。
4.陳嘉平,「CMP技術及其在半導體製程上的應用」,化學技術,第7卷,第12期,pp.47-52(1997)。
5.楊叢印,「結合電過濾/電透析技術處理CMP廢水同步產製電解水之研究」,博士論文,國立中山大學環境工程研究所,(2003)。
6.江建志,「氧化鈰粉體之合成及其在化學機械研磨漿料之特性探討」,碩士論文,逢甲大學化學工程學系,(2003)。
7.賴建宏,「天然濁水混凝最適加藥量與顆粒表面介達電位之關係研究」,國立交通大學環境工程研究所,(2010)。
8.黃富昌、林平和、曹正文、吳宇蓁、張侑昌、蔡崇平、楊仁宏、陳德鴻、李昇雨、吳懿云,「工業區汙水處理廠對化學機械研磨廢水處理之成本效益評估」,台灣環境資源永續發展研討會,(2009)。
9.陳麗梅,「CMP氧化膜用研磨液」,化工技術,第5卷,第10期,pp.38-41(1997)。
10.王建榮、林必窕、林慶福等編譯,「半導體平坦化CMP技術」,(2000)。
11.蔡明蒔,「化學機械研磨後清洗技術簡介」,奈米通訊,第6卷,第1期,pp.6-7(1999)。
12.鄭建南,「化學機械研磨廢水相關處理技術」環保技術e報,第19期,p.3-4(2004)。
13.「水再生利用風險之研究」,經濟部水利署,(2001)。
14.王冬信,「電子業超純水循環系統」,化工技術雜誌,第2期,No.7,第52-61頁,(1994)。
15.余光昌、黃汝賢、姜樹成,「石灰-蘇打灰軟化法處理硬水之加藥量及化學汙泥產生量」,自來水會刊雜誌,第30期,第1-9頁(1989)。
16.呂維明、呂文芳,「過濾技術」,高立圖書。
17.周瑋珊,「過濾結合粉狀活性碳應用於自來水處理之研究」,(2000)。
18.長庚大學呂幸江副教授,超純水技術專,http://www.fansi.net/。
19.徐振勝、陳文宏,環工化學精要,淑馨出版社。
20.陳啟明,「NF薄膜程序應用於自來水淨水工程之探討」,國立屏東科技大學食品科學系碩士班碩士論文,(2004)。
21.陳靜生,水環境化學,曉園出版社有限公司,(1992)。
22.「新竹科學工業園區汙水處理廠放流水回收再利用技術評估計畫」,新竹科學工業園區管理局,(2002)。
23.楊金鐘、楊叢印,「結合電化學及薄膜技術處理暨回收晶圓廠化學機械研磨廢水」,高科技工業環保技術及安全衛生研討會論文集,(2001)。
24.經濟部水利署,節水季刊17期,http://www.wra.gov.tw/。
25.蔡信行,聚合物化學,文京圖書。
26.蔡騰龍,工業水處理,正文書局,(1998)。
27.呂嘉敏,「混凝程序去除高科技產業廢水中非晶形二氧化矽之特性研究」,碩士論文,朝陽科技大學環境工程與管理系,(2003)。
28.台北自來水事業處,「高殘餘濁度水處理技術探討」,研究報告,台北(1998)。
29.邱彥斌,「利用 Fe3O4磁性顆粒處理化學機械研磨廢水」,碩士論文,國立中央大學,(2009)。
30.劉雅瑄、駱尚廉、官文惠等,「高分子聚合物對淨水水質影響評估」,第19屆自來水研究發表會論文集,Nov.15,台北,pp.22-29(2002)。
31.翁韻雅,「以高分子凝集劑處理高殘餘濁度原水之研究」,碩士論文,國立成功大學環境工程學系,(2003)。
32.歐陽嶠輝,「下水道工程學」,長松文化興業股份有限公司,(2002)。
33.工業汙染防治技術手冊,「化學混凝處理單元設計與操作」,(1994)。
34.工業汙染防治技術手冊,「廢水處理常用化學藥劑手冊」,(1994)。
35.邱信菖,「攪拌系統中膠體顆粒凝絮機制與穩態分析」,碩士論文,國立中央大學,(2005)。
36.張晉,「水處理工程與設計上冊」,鼎茂圖書出版,(1996)。
37.蘇揚根,「奈米微氣泡浮除技術於半導體工業化學機械研磨廢水處理之應用」,碩士論文,國立交通大學,(2004)。
38.楊博丞,「ODOBEZ高壓浮除系統助凝劑加藥模式探討-以工業區綜合性廢水處理為例」,碩士論文,國立中央大學,(2012)。
39.廖昌郁,「以鋁鹽混凝劑處理二氧化矽顆粒廢水鋁型態分佈及轉化特性的影響」,碩士論文,國立交通大學,(2006)。
40.高肇藩,「給水工程 (衛生工程。自來水篇)」,編著者發行,台南,(1978)
41.DUNCAN J SHAW著,張有義、郭蘭生譯,膠體及界面化學入門,高立圖書。
42.Larry D. Benefield著,楊萬發譯,水及廢水處理化學,茂昌圖書。
43.Takashi Asano, D著,洪仁陽等譯,水回收再利用,國立編譯館,(2002)。
44.劉訓瑜,「化學機械研磨廢水混凝沉澱效能之評估」,碩士論文,國立交通大學,(2000)。
45.Wang,Y. Liu,C., Feng, M. S., and Tseng, W. T.,Exothermic reaction and temperature measurement for tungsten CMP technology and its application on endpoint detection,Materials Chemistry and Physics,Vol.52, pp.1125-1134(1998)
46.Olga,Burgos-Montes.,and Rodrigo Moreno,“Stability of concentrated suspensions of Al2O3–SiO2 measured by multiple light scattering”, Journal of the European Ceramic Society,29, 603–610,(2009)
47.J,H. Hsu and B,T. Liu,“Electrostatic Potential Distribution for Spheroidal Surfaces in Symmetric Electrolyte Solutions ”, Journal of Colloid and Interface Science, Vol.192,No.481(1997)
48.Dentel, S. K., Gucciardi, B. M., Bober, T. A. and Resta, J. J.,“Procedures Manual for Polymer Selection in Water Treatment Plants”,AWWARF,Denver, CO80235,(1989)
49.Grrgory, J., “Rates of Flocculation of Latex Particles by Cationic Polymer”Jour. of Colloid Interface Sciencn , Vol.42,pp.448,(1973)
50.Iler, R.K. “The Chemistry of Silica,”John Wiley and Sons,New York, N. Y.(1979)
51.Comb, L. F., “Silica – Slica Chemistry and Reverse Osmosis”, Ultrapure Water.(1996)
52.Amirtharagjah, A. snd O’Melia, C. R., “Chap 6:Coagulation and Flocculation”,Water Quality and Treatment. 5th,AWWA, pp. 6.1,(1990)
53.J. Gregory, “Effects of polymers on colloid stability,” in K. J. Ives (ed.), The SciientificBasis of Flocculation, Sijthoff and Noordhoff, The Netherlands,(1978)
|