博碩士論文 103356028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.233.217.242
姓名 黃文宏(Wen-Hung Huang)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 結合土壤縮模試驗與 Real-time PCR 探究水田主要汞甲基化菌群
(Investigation of primary mercury methylating guilds in rice paddies using soil incubation microcosms and qPCR techniques)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響
★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例
★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例
★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢
★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例
★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年的研究顯示除了水產食品之外,稻米的攝食亦是人類暴露於甲基汞的另一重要途徑,然而目前對於水稻田系統中操控甲基汞的生成及稻作植株對甲基汞的攝取與累積於米粒的生物地質化學機制所知仍有限,為深入探討此一課題,本實驗室自 2014 年開始對台中火力發電廠周邊水稻田進行調查,以根圈土壤與合成培養液進行縮模試驗,並從中觀察到硫酸鹽還原菌極可能為主要的汞甲基化菌群。然而此試驗並非直接採用現地孔隙水,且未分析微生物族群的細部結構,其結果可能無法完整的反應水稻田系統內部汞循環與轉化的實際狀況。因此,本研究接續先前的研究,並採用現地根圈土壤與孔隙水重複與追蹤調查前期的縮模試驗,並依可能的厭氧菌群其特定營養條件添加各自相應的促進或抑制劑,於相同時空環境下同時進行汞的甲基化與去甲基化試驗,另外亦藉由qPCR相對定量技術,從基因層面探討主要左右甲基汞生成的厭氧菌群。研究結果顯示,不同控制條件下的甲基汞去除率相近,表示水田環境中的甲基汞累積程度主要取決於汞的甲基化潛勢;化學分析與 qPCR 相對定量的綜合結果再次顯示本研究所選的水稻田環境是以 Deltaproteobacteria 中的硫酸鹽還原菌為主要汞甲基化菌群。而此研究結果或許可供後續水稻田環境系統中的汞污染防治與管理策略的擬定參考。
摘要(英) Recent studies have shown that in addition to marine foods, rice consumption is another significant route of human exposure to methylmercury. However, knowledge of the mechanism that underpins mercury methylation in rice paddies as well as the uptake and accumulation of methylated mercury in rice plants is still limited. To explore this subject, we began with field studies that measured relevant geochemical and microbial parameters pertaining to mercury cycling in a suite of rice paddies proximate to the Taichung coal-fired power station in 2014; soil incubations with synthetic growth media were also carried out. It was observed that sulfate-reducing bacteria (SRB) were likely the primary mercury methylators under the investigational conditions. However, because these tests did not directly use the pore water from the rice fields, nor did them analyze the detailed structure of the microbial population, the obtained results might not be able to thoroughly reflect the actual picture of mercury biogeochemical transformations in the paddy systems. Therefore, in this study we modified our previous set-ups by using not only the rhizosphere soil but also the porewater of our study sites to probe the potential of in situ mercury methylation that is closer to the reality. Additionally, quantitative real-time PCR (i.e., qPCR) was incorporated into the investigation to obtain the information of microbial activity at the molecular level in terms of gene copy numbers. Results show that the methylmercury degradation rates under different experimental conditions were similar, indicating that the degree of methylmercury accumulation in paddy fields might depend mainly on the methylation intensity. The combined results of chemical analysis and qPCR showed that the principal mercury methylating guild of the selected paddy fields might still be Deltaproteobacteria, in particular SRB. The outcome of this study may serve as a reference for the prevention and management strategies of mercury methylation in arable land systems.
關鍵字(中) ★ 水稻田
★ 甲基汞
★ 定量即時聚合酶鏈鎖反應
★ 硫酸鹽還原菌
關鍵字(英) ★ rice paddies
★ methylmercury
★ qPCR
★ sulfate-reducing bacteria
論文目次 摘要 i
Abstract ii
目 錄 iv
圖 目 錄 vi
表 目 錄 vii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 6
第二章 文獻回顧 7
2-1 環境中汞的來源、型態與危害 7
2-2 濕地為汞甲基化的熱點場址 11
2-3 參與汞甲基化反應的微生物 13
2-4 環境因子對汞甲基化的影響 17
2-5 水稻田的甲基汞生成與風險 22
第三章 研究方法與設備 26
3-1 研究架構流程 26
3-2 場址概述 27
3-3 實驗藥品與試劑 29
3-4 現地採樣規劃與樣品前處理 30
3-5 化學分析 32
3-5-1 鐵分析項目 32
3-5-2 硫酸鹽分析 33
3-5-3 孔隙水甲基汞分析 33
3-6 微生物縮模試驗 35
3-7 分子生物實驗 41
3-7-1 DNA 萃取 41
3-7-2 即時聚合酶鏈鎖反應 42
第四章 結果與討論 46
4-1 水稻田環境地化參數分析 47
4-2 汞甲基化縮模試驗結果 50
4-3 去甲基化縮模試驗結果 55
4-4 分子生物實驗結果 58
4-4-1 DNA isolation test 58
4-4-2 Real-time PCR 實驗結果 61
4-5 分生實驗與縮模試驗之探討 69
4-6 研究與環境層面意義 71
第五章 結論與建議 73
5-1 結論 73
5-2 建議 74
參考文獻 75
參考文獻 1. Aiken, G. R., C. C. Gilmour, D. P. Krabbenhoft, and W. Orem (2011) “Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration”, Critical Reviews in Environmental Science and Technology, vol. 41, pp. 217-248.
2. Barringer, J. L., and C. L. MacLeod (2001) "Relation of mercury to other chemical constituents in ground water in the Kirkwood-Cohansey aquifer system New Jersey Coastal Plain, and mechanisms for mobilization of mercury from sediments to ground water." US Department of the Interior, US Geological Survey.
3. Benoit, J., C. Gilmour, A. Heyes, R. Mason, and C. Miller (2003) "Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems." ACS symposium series: 262-297.
4. Benoit, J. M., C. C. Gilmour, and R. P. Mason (2001) "The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of desulfobulbus propionicus(1pr3). " Environmental Science & Technology 35: 127-132.
5. Benoit, J. M., C. C. Gilmour, R. P. Mason, and A. Heyes (1999) "Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters" Environmental Science & Technology 33: 951-957,
6. Barkay, T., M. Gillman, and R. R. Turner (1997) “Effects of dissolved organic carbon and salinity on bioavailability of mercury”, Appl Environ Microbiol, vol. 63, pp. 4267-4271.
7. Branfireun, B. A., N. T. Roulet, C. A. Kelly, and J. W. M. Rudd (1999). "In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments" Global Biogeochemical Cycles 13: 743-750,
8. Bridou, R., M. Monperrus, P. R. Gonzalez, R. Guyoneaud, and D. Amouroux (2011) “Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers”, Environ Toxicol Chem, vol. 30, pp. 337-344.
9. Carpi, A. (1997). "Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere." Water, Air, and SoilPollution 98: 241-254.
10. Christensen, G. A., A. M. Wymore, A. J. King, M. Podar, R. A. Hurt, Jr., E. U. Santillan, A. Soren, C. C. Brandt, S. D. Brown, A. V. Palumbo, J. D. Wall, C. C. Gilmour and D. A. Elias (2016). "Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment." Applied and Environmental Microbiology 82: 6068-6078.
11. Clarkson, T. W. (1993) “Mercury: major issues in environmental health”, Environmental Health Perspectives, vol. 100, p. 31.
12. Compeau, G. C. and R. Bartha (1985). "Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment." Applied and Environmental Microbiology: 498-502.
13. Compeau, G. C., and R. Bartha (1987) “Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments”, Appl Environ Microbiol, vol. 53, pp. 261-265.
14. Cutter, G. A., and C. F. Krahforst (1988) “Sulfide in surface waters of the western Atlantic Ocean”, Geophysical Research Letters, vol. 15, pp. 1393-1396.
15. Domagalski, J. L., C. N. Alpers, D. G. Slotton, T. H. Suchanek and S. M. Ayers (2004). "Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California." Science of The Total Environment 327: 215-237.
16. Evers, D. C., R. T. Graham, C. R. Perkins, R. Michener and T. Divoll (2009). "Mercury concentrations in the goliath grouper of Belize: an anthropogenic stressor of concern." Endangered Species Research 7: 249-256.
17. Feng, X., P. Li, G. Qiu, S. Wang, G. Li, L. Shang, B. Meng, H. Jiang, W. Bai, Z. Li and X. Fu (2008). "Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China." Environmental Science & Technology 42: 326-332.
18. Fitzgerald, W.F. and C.H. Lamborg (2005) "Geochemistry of mercury in the environment." In Environmental Geochemistry; Lollar, B.S., Ed.; Elsevier; Oxford:107-148.
19. Fleming, E. J., E. E. Mack, P. G. Green and D. C. Nelson (2006). "Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium." Applied and Environmental Microbiology 72: 457-464.
20. Gilmour, C. C., and E. A. Henry (1991) “Mercury methylation in aquatic systems affected by acid deposition”, Environ Pollut, vol. 71, pp. 131-169.
21. Gilmour, C., D. Krabbenhoft, W. Orem, G. Aiken, and E. Roden (2007) “Appendix 3B-2: status report on ACME studies on the control of mercury methylation and bioaccumulation in the Everglades”, 2007 South Florida Environmental Report, vol. 1, pp. 3B-2.
22. Gilmour, C. C., D. A. Elias, A. M. Kucken, S. D. Brown, A. V. Palumbo, C. W. Schadt, and J. D. Wall (2011) "Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation." Applied and Environmental Microbiology 77: 3938-3951
23. Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey and D. A. Elias (2013). "mercury methylation by novel microorganisms from new environments." Environmental Science & Technology 47: 11810-11820.
24. Hamelin, S., M. Amyot, T. Barkay, Y. Wang and D. Planas (2011). "Methanogens: principal methylators of mercury in lake periphyton." Environmental Science & Technology 45: 7693-7700.
25. Han, F. X., Y. Su, D. L. Monts, C. A. Waggoner and M. J. Plodinec (2006). "Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA." Science of the Total Environment 368: 753-768.
26. Harris, R. C., J. W. Rudd, M. Amyot, C. L. Babiarz, K. G. Beaty, P. J. Blanchfield, R. A. Bodaly, B. A. Branfireun, C. C. Gilmour, J. A. Graydon, A. Heyes, H. Hintelmann, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J. Paterson, C. L. Podemski, A. Robinson, K. A. Sandilands, G. R. Southworth, V. L. St Louis, and M. T. Tate (2007) “Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition”, Proc Natl Acad Sci U S A, vol. 104, pp. 16586-16591.
27. Hemond, H.F., and Fechner, E.J., “Chemical Fate and Transport in the Environment”, Elsevier Inc. San Diego, CA., 2015
28. Horvat, M., N. Nolde, V. Fajon, V. Jereb, M. Logar, S. Lojen, R. Jacimovic, I. Falnoga, Q. Liya, J. Faganeli and D. Drobne (2003). "Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China." Science of The Total Environment 304: 231-256.
29. Hurley, J. P., J. M. Benoit, C. L. Babiarz, M. M. Shafer, A. W. Andren, J. R. Sullivan, R. Hammond, and D. A. Webb (1995) “Influences of watershed characteristics on mercury levels in wisconsin rivers”, Environ Sci Technol, vol. 29, pp. 1867-1875.
30. Jensen, S., and A. JernelÖV (1969) “Biological Methylation of Mercury in Aquatic Organisms”, Nature, vol. 223, pp. 753-754.
31. Keeler, G.J., Landis, M.S., Norris, G.A., Christianson, E.M., and J.R. Dvonch (2006). "Sources of mercury wet deposition in eastern Ohio, USA." Environmental Science & Technology 40: 5874-5881.
32. Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates, and R. P. Mason (2006) “Mercury methylation by dissimilatory iron-reducing bacteria”, Appl Environ Microbiol, vol. 72, pp. 7919-7921.
33. Kirby, A., I. Rucevska, C. C. YemelinV, and O. Simonett (2013) “Mercury–Time to Act”, United Nations Environment Program, vol. 23.
34. Kudo, A., Y. Fujikawa, S. Miyahara, J. Zheng, H. Takigami, M. Sugahara and T. Muramatsu (1998). "Lessons from Minamata mercury pollution, Japan — After a continuous 22 years of observation." Water Science and Technology 38: 187-193.
35. Landis, M. S., J. V. Ryan, A. F. Ter Schure, and D. Laudal (2014) “Behavior of Mercury Emissions from a Commercial Coal-Fired Power Plant: The Relationship between Stack Speciation and Near-Field Plume Measurements”, Environ Sci Technol.
36. Lehnherr, I., and V. L. St. Louis (2009) “Importance of Ultraviolet Radiation in the Photodemethylation of Methylmercury in Freshwater Ecosystems”, Environmental Science & Technology, vol. 43, pp. 5692-5698.
37. Livak, K. J., and T. D. Schmittgen (2001) “Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2-△△CT Method” METHODS 25: 402–408.
38. Lin, C.-C., N. Yee, and T. Barkay (2011). "Microbial transformations in the mercury cycle." In: Environmental Chemistry and Toxicology of Mercury, O’driscoll, N., et al. (Editors) John Wiley & Sons, Inc. 156
39. Lin, C.-C., N. Yee and T. Barkay (2012). " Microbial transformations in the mercury cycle" 155.
40. Liu, Y.-R., R.-Q. Yu, Y.-M. Zheng and J.-Z. He (2014). "Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in Paddy soils along an Hg gradient." Applied and Environmental Microbiology 80: 2874-2879.
41. Liu, Y. and W. B. Whitman (2008). "Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea." Annals of the New York Academy of Sciences 1125: 171-189.
42. Lovley, D. R., and E. J. Phillips (1987). "Rapid assay for microbially reducible ferric iron in aquatic sediments."Applied and Environmental Microbiology 53: 1536-1540
43. Lu, X., Y. Liu, A. Johs, L. Zhao, T. Wang, Z. Yang, H. Lin, D. A. Elias, E. M. Pierce, L. Liang, T. Barkay, and B. Gu (2016) “Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem”, Environ Sci Technol, vol. 50, pp. 4366-4373.
44. Marvin-DiPasquale, M., Windham-Myers, L., Agee, J.L., Kakouros, E., Kieu, L.H., Fleck, J.A., Alpers, C.N. and C.A. Stricker (2014). "Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA." Science of the Total Environment 484: 288-299.
45. Meng, B., X. Feng, G. Qiu, Y. Cai, D. Wang, P. Li, L. Shang and J. Sommar (2010). "Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways." Journal of Agricultural and Food Chemistry 58(8): 4951-4958.
46. Meng, B., X. Feng, G. Qiu, P. Liang, P. Li, C. Chen and L. Shang (2011). "The process of methylmercury accumulation in rice (Oryza sativa L.)." Environmental Science & Technology 45(7): 2711-2717.
47. Meng, B., Feng, X., Qiu, G., Wang, D., Liang, P., Li, P., and L. Shang (2012). "Inorganic mercury accumulation in rice (Oryza sativa L.)." Environmental Toxicology and Chemistry 31: 2093-2098.
48. Meng, B., X. Feng, G. Qiu, C. W. Anderson, J. Wang and L. Zhao (2014). "Localization and speciation of mercury in brown rice with implications for pan-Asian public health." Environmental Science & Technology 48(14): 7974-7981.
49. Miskimmin, B. M. (1991) “Effect of natural levels of Dissolved Organic Carbon (DOC) on methyl mercury formation and sediment-water partitioning”, Bulletin of Environmental Contamination and Toxicology, vol. 47, pp. 743-750.
50. Munthe, J., R. A. Bodaly, B. A. Branfireun, C. T. Driscoll, C. C. Gilmour, R. Harris, M. Horvat, M. Lucotte, and O. Malm (2007) “Recovery of Mercury-Contaminated Fisheries”, AMBIO: A Journal of the Human Environment, vol. 36, pp. 33-44.
51. Ndu, U., Mason, R.P., Zhang, H., Lin, S., Visscher, P.T., 2012. Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter. Appl. Environ. Microbiol. 78, 7276e7282.
52. Orem, W., C. Gilmour, D. Axelrad, D. Krabbenhoft, D. Scheidt, P. Kalla, P. McCormick, M. Gabriel and G. Aiken (2011). "Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration." Critical Reviews in Environmental Science and Technology 41(sup1): 249-288.
53. Oremland, R. S., and B. F. Taylor (1978) “Sulfate reduction and methanogenesis in marine sediments”, Geochimica Et Cosmochimica Acta, vol. 42, pp. 209-214.
54. Organization, W. H. (1990) “IPCS environmental health criteria 101: methylmercury. International programme of chemical safety”, World Health Organization, Geneva, Switzerland.
55. Parks, J. M., A. Johs, M. Podar, R. Bridou, R. A. Hurt, Jr., S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias and L. Liang (2013). "The genetic basis for bacterial mercury methylation." Science 339(6125): 1332-1335.
56. Peng, X., F. Liu, W.-X. Wang and Z. Ye (2012). "Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars." Environmental Pollution 162: 202-208.
57. Qiu, G., Feng, X., Li, P., Wang, S., Li, G., Shang, L., Fu, X., 2008. Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. J. Agric. Food Chem. 56, 2465e2468.
58. Rothenberg, S. E., R. F. Ambrose, and J. A. Jay (2008) "Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA" Environmental Pollution 154: 32-45
59. Rothenberg, S. E., X. Feng, B. Dong, L. Shang, R. Yin and X. Yuan (2011). "Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies." Environmental Pollution 159(5): 1283-1289.
60. Rothenberg, S. E., and X. Feng (2012) "Mercury cycling in a flooded rice paddy”, Journal of Geophysical Research." vol. 117
61. Rothenberg, S. E., L. Windham-Myers and J. E. Creswell (2014). "Rice methylmercury exposure and mitigation: a comprehensive review." Environmental Research 133: 407-423.
62. Rothenberg, S. E., M. Anders, N. J. Ajami, J. F. Petrosino and E. Balogh (2016). "Water management impacts rice methylmercury and the soil microbiome." Science of the Total Environment 572: 608-617.
63. Schaefer, J. K., and F. M. M. Morel (2009) "High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens." Nature Geoscience 2: 123-126.
64. Slowey, A.J., Brown, G.E., (2007). Transformation of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide. Geochim. Cosmo- chim. Acta 71, 877e894.
65. St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, K. G. Beaty, N. S. Bloom and R. J. Flett (1994). "Importance of wetlands as sources of methyl mercury to boreal forest ecosystems." Canadian Journal of Fisheries and Aquatic Sciences 51(5): 1065-1076.
66. Stein, E. D., Y. Cohen and A. M. Winer (1996). "Environmental distribution and transformation of mercury compounds." Critical Reviews in Environmental Science and Technology 26: 1-43.
67. Stenico, V., L. Baffoni, F. Gaggìa and B. Biavati (2014). "Validation of candidate reference genes in Bifidobacterium adolescentis for gene expression normalization." Anaerobe 27: 34-39.
68. Su, Y.-B., W.-C. Chang, H.-C. Hsi and C.-C. Lin (2016). "Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan." Chemosphere 154: 375-384.
69. Ullrich, S. M., T. W. Tanton, and S. A. Abdrashitova (2001). "Mercury in the aquatic environment: a review of factors affecting Methylation. " Critical Reviews in Environmental Science and Technology 31 :241-293
70. UNEP (2008). "The global atmospheric mercury assessment: sources, emissionis and transport."
71. UNEP (2013). "The global mercury assessment 2013: sources, emissions, releases and environmental transport."
72. UNEP (2015). "Global mercury modelling: updates of modelling results in the global mercury assessment 2013."
73. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman (2002). "Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes." Genome Biology 3(7): research0034.0031.
74. Wang, X., Z. Ye, B. Li, L. Huang, M. Meng, J. Shi and G. Jiang (2014). "Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg." Environmental Science & Technology 48(3): 1878-1885.
75. WHO (2010). "Action is needed on chemicals of major public health concern."
76. Wiener, J. G., B. C. Knights, M. B. Sandheinrich, J. D. Jeremiason, M. E. Brigham, D. R. Engstrom, L. G. Woodruff, W. F. Cannon, and S. J. Balogh (2006). "Mercury in soils, lakes, and fish in voyageurs national park (Minnesota): Importance of Atmospheric Deposition and Ecosystem Factors." Environmental Science & Technology 40: 6261-6268
77. Windham-Myers, L., Marvin-Dipasquale, M., Krabbenhoft, D.P., Agee, J.L., Cox, M.H., Heredia-Middleton, P., Coates, C., Kakouros, E., (2009). Experimental removal of wetland emergent vegetation leads to decrease demethylmercury production in surface sediment. J. Geophys. Res. 114, G00C05. http://dx.doi.org/10.1029/ 2008JG00081.
78. Windham-Myers, L., Fleck, J.A., Ackerman J.T., Marvin-DiPasquale, M., Stricker, C.A., Heim, W.A., Bachand, P.A.M., Eagles-Smith, C.A., Gill, G., Stephenson, M.and C.N. Alpers (2014a). "Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study." Science of the Total Environment 484:221-231.
79. Windham-Myers, L., M. Marvin-DiPasquale, A. S. C, J. L. Agee, H. K. L and E. Kakouros (2014b). "Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production." Science of the Total Environment 484: 300-307.
80. Windham-Myers, L., M. Marvin-DiPasquale, E. Kakouros, J. L. Agee, L. H. Kieu, C. A. Stricker, J. A. Fleck and J. T. Ackerman (2014c). "Mercury cycling in agricultural and managed wetlands of California, USA: Seasonal influences of vegetation on mercury methylation, storage, and transport." Science of The Total Environment 484: 308-318.
81. Yu, R.-Q., J. R. Flanders, E. E. Mack, R. Turner, M. B. Mirza and T. Barkay (2012). "Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in Freshwater River Sediments." Environmental Science & Technology 46(5): 2684-2691.
82. Yu, R.-Q., J. R. Reinfelder, M. E. Hines and T. Barkay (2013). "Mercury methylation by the methanogen methanospirillum hungatei." Applied and Environmental Microbiology: 6325–6330.
83. Zhang, T., and H. Hsu-Kim (2010) “Photolytic degradation of methylmercury enhanced by binding to natural organic ligands”, Nat Geosci, vol. 3, pp. 473-476.
84. Zhang, H., Feng, X., Larssen, T., Qiu, G. and R.D. Vogt (2010a). "In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. " Environmental Health Perspectives 118, 1183-1188.
85. Zhang, H., X. Feng, T. Larssen, LihaiShang and P. Li (2010b). "Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain." Environmental Science & Technology 44(12): 4499-4504.
指導教授 林居慶 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明