博碩士論文 103383004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.143.168.172
姓名 馮耀鋆(Yao-Yun Feng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 三維導電微成型技術開發應用於微機電系統之研究
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 用於電火花加工的油質感測器★ 油液污濁度檢測器之設計與改良
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究發展一套三維導電微成型系統,透過不同的導電材料,可與微米等級之微機電或機械加工後之結構進行整合,完成低粗糙表面、高機械強度、具高複雜性的微立體結構;以下,將介紹該製程完成相關微機電領域之應用(電磁式微發電機、電熱夾持器)。
首先以該製程搭配液態金屬,應用在以質量塊為作動機制之電磁式旋轉發電機上,完成具高複雜性線圈之繞製與佈線,整體發電機尺寸約為11×11×12 mm3輸出功率達20.3 μW;並由該製程搭配銀膠,在經微機電製程加工後的懸臂樑(尺寸為7 mm×7 mm×0.02 mm)上,製作單層及雙層線圈,完成微電磁式振動發電機之製作,以重複堆疊之方式降低其電阻提升輸出功率,最大輸出功率為82 nW;最後,經該製程搭配銀鎳膠,成功地應用在電熱式微夾持器上,利用矽基材與犧牲材料之組合,可一次性完成差異大且具橢圓截面積的U型對稱結構,並測試其機械與電性行為,結構總長約9 mm,可打開311 μm的間隙。
摘要(英) Since the trend of the Internet and Industrie 4.0 technology in recent years, massive promoted Micro-electromechanical systems (MEMS) result in the increasing demand of the sensors application. Thus, improving the degree-of-freedom on the fabrication of micro structure has been in focus. Compared to the complex fabrication and low degree-of-freedom on the traditional MEMS-3D-structure, we develop a series fabrication method of conductive 3D direct-write structure, which integrates the different conductive materials and micro-scale MEMS-structure for the structure with low-roughness of surface、high-strength of mechanical、high-complexity. In the research, the application of this fabrication will be introduced such as micro electromagnetic energy generator, or miniaturized electro-thermal grippers.
The conductive 3D processing method is successfully utilized on the micro energy generators and micro actuators from the results. With different materials, we can design different dimensions, shapes and applications for the structure. With the benefits of workable in general environments, simple fabricating process, and wide range of material selection, we provide a better substitute option comparing to the traditional semi-conductor fabricating process.
關鍵字(中) ★ 導電立體製程
★ 微機電技術
★ 電磁式微發電機
★ 電熱式微夾持器
關鍵字(英) ★ conductive three-dimensional process
★ micro-electro-mechanical systems (MEMS)
★ micro-electro-magnetic generator
★ micro-electro-thermal gripper
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
符號表 xv
第一章 緒論 1
1-1 前言 1
1-2 研究目的與應用 2
1-3 微結構成型文獻 4
1-3-1 微結構成型 4
1-3-2 液態金屬成型 10
1-4 論文架構 12
第二章 三維導電微成型技術 13
2-1 設備 13
2-1-1 液態金屬 13
2-1-2 導電膠 14
2-2 材料 15
2-2-1 液態金屬 15
2-2-2 導電膠 16
2-3 結構測試 17
第三章 電磁式旋轉發電機之應用 20
3-1相關技術 20
3-2 理論與模擬 26
3-2-1 線圈轉速與感應電壓頻率關係 26
3-2-2 電磁感應發電基礎理論 26
3-2-3 線圈之感應電動勢 27
3-2-4 旋轉發電機模擬 31
3-2-5 模擬流程與方法 32
3-2-6 磁極設計模擬 35
3-2-7 線圈設計模擬 38
3-3 旋轉發電設計與製作 42
3-3-1 設計 42
3-3-2 製程 44
3-4 實驗結果 51
3-4-1 旋轉裝置 51
3-4-2 磁場量測 52
3-4-3 旋轉發電機量測(未封裝) 53
3-4-4 旋轉發電機量測(封裝) 58
3-5 昇壓儲能電路 63
3-5-1 多倍壓電路 63
3-5-2 儲能電路 66
3-5-3 實驗結果 68
3-6 討論與結論 72
第四章 電磁式振動發電機之應用 73
4-1 相關技術 73
4-2 振動發電基礎理論 75
4-2-1 機械模型 76
4-2-2 電路模型 77
4-2-3 發電機結構總分析 78
4-3 振動發電機製程 80
4-4 振動發電實驗結果 82
4-4-1 量測架構 83
4-4-2 實驗結果 83
4-5 討論與結論 85
第五章 電熱式夾持器之應用 87
5-1 研究動機 87
5-1-1 微致動器背景 87
5-1-2 相關技術 89
5-2 電熱夾持器基礎理論 92
5-2-1 電分析 93
5-2-2 熱分析 93
5-3 電熱夾持器製程 95
5-4 電熱夾持器實驗結果 97
5-4-1 量測架構 97
5-4-2 實驗結果 98
5-5 電熱夾持器模擬 101
5-5-1 原型結構模擬分析 101
5-5-2 寬厚度改變結構模擬分析 103
5-6 討論與結論 104
第六章 結論與未來展望 107
6-1 結果與結論 107
6-1-1 旋轉電磁式發電機 107
6-1-2 振動電磁式發電機 108
6-1-3 電熱式夾持器 108
6-2 未來展望 110
參考文獻 111
參考文獻 [1] L. Mateu and F. Moll, “Review of energy harvesting techniques and applications for microelectronics”, Proc. SPIE, 5837, pp. 359-373, 2005.
[2] L. Tang, Y. Yang, and C. K. Soh, “Toward broadband vibration-based energy harvesting”, J. Intell. Mater. Syst. Struct., 21, pp. 1867–97, 2010.
[3] G. D. Pasquale and A. Soma, "Investigations on energy scavenging methods using MEMS devices", Proc. International Semiconductor Conference (CAS), vol. 1, pp. 163-166, 2008.
[4] Y. J. Wang, S. C. Shen and C. D. Chen, “Wideband Electromagnetic Energy Harvesting from a Rotating Wheel”, Small-Scale Energy Harvesting, 2012.
[5] W. Booth, “Vibration Control: How to determine your equipment needs”, Laser Focus World 46, 65–71, 2010.
[6] G. T. A. Kovacs, “Micromachined Transducers Sourcebook”, McGraw-Hill, New York, 1998.
[7] 高瑞麟,「振動型微型發電機之設計與實作」,國立清華大學,碩士論文,民國99年。
[8] C. R. Bowen, M. Arafa, "Energy Harvesting Technologies for Tire Pressure Monitoring Systems", Adv. Energy Mater, no. 7, Apr 2015.
[9] A. R. M. Siddique, S. Mahmud, B. Van Heyst, “A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms”, Energy Conversion and Management, vol. 106, pp. 728-747, 2015.
[10] R. D. Farahani, K. Chizari, D. Therriault, “Three-dimensional printing of freeform helical microstructures: a review”, Nanoscale, pp. 10470–10485, 6, 2014.
[11] J. A. Lewis, G. M. Gratson, “writing in three dimensions”, Mater. Today, 7, pp. 32–39, 2004.
[12] M. Vaezi, H. Seitz and S. Yang, “A review on 3D micro-additive manufacturing technologies”, Int. J. Adv. Manuf. Technol, 67, pp. 1721–1754, 2013.
[13] Y. J. Ciou, Y. R. Hwang, J. C. Lin, Y. T. Tseng, “Fabrication of 3D microstructures by localized electrochemical deposition with image feedback distance control and five-axis motion platform”, ECS J. Solid State Sci. Technol, 5, pp. 425, 2016.
[14] B. Bhushan and S. Matsui, “Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition” , Springer Handbook of Nanotechnology, Berlin, Heidelberg: Springer, pp. 211–229, 2010.
[15] S. H. Ko, J. Chung, N. Hotz, K. H. Nam, C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication”, J. Micromech. Microeng, 20, p. 125010, 2010.
[16] J. W. Choi, R. Wicker, S. H. Cho, C. S. Ha and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography”, Rapid Prototyping Journal, 15, pp. 59–70, 2009.
[17] A. Yamada, F. Niikura, K. Ikuta, “A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility”, J Micromech Microeng, 18, p. 025035, 2008.
[18] J. Hu and M. F. Yu, “Meniscus-confined three-dimensional electrodepostion for direct writing of wire bonds”, Science, 329, pp. 313-316, 2010.
[19] L. L. Lebel, B. Aissa, M. A. E. Khakani, D. Therriault, “Ultraviolet-assisted directwrite fabrication of carbon nanotube/polymer nanocomposite microcoils”, Advanced Materials, 22, pp. 592–596, 2010.
[20] C. Trlica, D. P. Parekh, L. Panich, C. Ladd, M. D. Dickey, “3-D Printing of Liquid Metals for Stretchable and Flexible Conductors”, in Proceedings of SPIE, vol. 9083, p. 90831D1-10, 2014.
[21] L. Wang, J. Liu, “Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink”, Science China Technological Sciences, 57, pp. 1721–1728, 2014.
[22] M. A Skylar-Scott, S. Gunasekaran, J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures”, Proc. Natl. Acad. Sci. USA, 113, pp. 6137–6142, 2016.
[23] X. L. Wang, J. Liu, “Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications”, Micromachines, vol. 7, no. 12, 206, 2016.
[24] E. Romero, M. R. Neuman, R. O. Warrington, “Rotational energy harvester for body motion”, Proc. IEEE 24th Int. Conf. Micro Electro Mech. Syst., pp. 1325-1328, Jan. 2011.
[25] Y. Wang, C. Chen, C. Sung, “System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel”, IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 754-763, Apr. 2013.
[26] M. Niroomand, H. R. Foroughi, “A rotary electromagnetic microgenerator for energy harvesting from human motions”, Journal of Applied Researchand Technology, vol. 14, pp. 259-267, 2016.
[27] M. A. Halim, R. Rantz, Q. Zhang, L. Gu, K. Yang, S. Roundy, “Electromagnetic energy harvesting from swing-arm motion using rotational eccentric mass structure”, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017 19th International Conference on, pp. 1863-1866, 2017.
[28] S. Tomincasa, M. Repetto, E. Bonisoli, F. Di Monacol, “Energy harvester for vehicle tires: Nonlinear dynamics and experimental outcomes”, J. Intel. Mat. Sys. & Struc., vol. 23, pp. 3-13, February. 2012.
[29] Y. J. Wang, C. D. Chen, C. C. Lin, J. H. Yu, “A nonlinear suspended energy harvester for a tire pressure monitoring system.”, Micromachines, 6, pp. 312–327, 2015.
[30] Q. Wang, Y. Zhang, N. Sun, J. McDaniel, M. Wang, “High power density energy harvester with high permeability magnetic material embedded in a rotating wheel”, Proc. of SPIE, vol. 8347, 83470V-1, 2012.
[31] S. Lee, D. H. Kim, “Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System”, Journal of Magnetics, vol. 18, no. 4, pp. 473-480, 2013.
[32] A. S. Holmes, G. Hong, K. R. Pullen, “Axial-flux permanent magnet machines for micropower generation”, J. Microelectromech. Syst., vol. 14, no. 1, pp. 54-62, Feb. 2005.
[33] D. A. Wang, C. Y. Chiu, H. T. Pham, “Electromagnetic energy harvesting from vibrations induced by Karman vortex street”, Mechatronics, vol. 22, no. 6, pp. 746-756, 2012.
[34] E. D. Ramirez, “Energy harvesting from body motion using rotational micro-generation”, PhD Thesis, Michigan Technological University, Houghton, MI, 2010.
[35] Y. J. Chen, C. T. Pan, Z. H. Liu, “Analysis of an in-plane micro-generator with various microcoil shapes”, Microsyst. Technol., 19, pp. 43–52, 2013.
[36] C. T. Pan, T. T. Wu, “Development of a rotary electromagnetic microgenerator”, J. Micromech. Microeng., vol. 17, no. 1, pp. 120-128, Jan. 2007.
[37] D. Zhu, S. Beeby, J. Tudor, N. Harris, “Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays”, Sens. Actuators A Phys., vol. 203, pp. 11-19, Dec. 2013.
[38] D. Zhu, S. Beeby, J. Tudor, N. Harris, “Vibration energy harvesting using the Halbach array”, Smart Mater. Struct., vol. 21, 2012.
[39] P. S. Weng, H. Y. Tang, P. C. Ku, L. H. Lu, "50 mV-Input batteryless boost converter for thermal energy harvesting", IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, Apr. 2013.
[40] 陳星兆,「基於Cockcroft-Walton倍壓電路具功率因數修正之柔性切換高升壓比交流-直流轉換器」,國立台灣科技大學,碩士論文,民國102年。
[41] 曾重仁,江沅晉,李達生,黃衍任,張仍奎,儲能技術概論,國立中央大學,台灣,第一版
[42] L. Du, G. Shi and J. Zhao, “Review of micro magnetic generator”, Sensors & Transducers, pp. 1-12, 2014.
[43]Y. Tan, Y. Dong, X. Wang, “Review of MEMS electromagnetic vibration energy harvester”, J. Microelectromech. Syst., vol. 26, no. 1, pp. 1-16, Feb. 2017.
[44] C. Cepnik, R. Lausecker and U. Wallrabe, “Review on Electrodynamic Energy Harvesters-A Classification Approach Laboratory of Micro Actuators”, Micromachines, 4, pp. 168-196, 2013.
[45] C. B. Williams, and R. B. Yates, “Analysis of a micro-electric generator for microsystems,” Sensors and Actuators A: Physical, vol. 52, iss. 1-3, pp. 8-11, 1996.
[46] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O′Donnell, C. R. Saha, S. Roy, “A micro electromagnetic generator for vibration energy harvesting”, J. Micromech. Microeng., vol. 17, no. 7, p. 1257, 2007.
[47] I. Sari, T. Balkan H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations”, Sensors and Actuators A: Physical, vols. 145–146, pp. 405–413, Jul/Aug. 2008.
[48] P. Wang, K. Tanaka, S. Sugiyama, X. Dai, X. Zhao, J. Liu, “A micro electromagnetic low level vibration energy harvester based on MEMS technology”, Microsyst. Technol., vol. 15, no. 6, pp. 941–951, 2009.
[49] S. Roundy, E. Takahashi, “A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate”, Sensors and Actuators A: Physical, vol. 195, pp. 98–104, Jun. 2013.
[50] S. Roundy, P. K. Wright, J. Rabaye, “A study of low level vibrations as a power source for wireless sensor nodes”, Computer Communications, 26, pp. 1131–1144, 2003.
[51] Q. Zhang, Y. Wang, L. Zhao, E. S. Kim, “Integration of microfabricated low resistance and thousand turn coils for vibration energy harvesting”, J. Micromech. Mircoeng., 26, pp. 1–10, 2016.
[52] K. Tao, G. Ding, P. Wang, Z. Yang, Y. Wang, “Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets”, In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, pp. 1237–1240, 29 January–2 February 2012.
[53] D. Hoffmann, C. Kallenbach, M. Dobmaier, B. Folkmer, Y. Manoli, “Flexible polyimide film technology for vibration energy harvesting”, In Proceedings of the Power-MEMS 2009, Washington, DC, USA, 1–4, pp. 455–458, December. 2009.
[54] Q. Zhang, E. S. Kim, “Micromachined energy-harvester stack with enhanced electromagnetic induction through vertical integration of magnets”, J. Microelectromech. Syst., 24, pp. 384–394, 2015.
[55] I. Sari, T. Balkan, H. Kulah, “An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique”, J. Microelectromech. Syst., 19, pp. 14–27, 2010.
[56] N. Wang, D. P. Arnold, “Fully batch-fabricated MEMS magnetic vibrational energy harvesters”, Proc. PowerMEMS, pp. 348-351, 2009.
[57] N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, Z. Wen, “A laser-micromachined multi-modal resonating power transducer for wireless sensing systems”, Sens. Actuators A Phys., 97, pp. 685–690, 2002.
[58] Q. Zhang, S. J. Chen, L. Baumgartel, A. Lin, E. S. Kim, “Microelectromagnetic energy harvester with integrated magnets”, In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, 5–9, pp. 1657–1660, June 2011.
[59] B. E. Volland, H. Heerlein, I. W. Rangelow, “Electrostatically drivenmicrogripper”, Microelectron. Eng., 61, pp. 1015–1023, 2003.
[60] C. J. Kim, A. P. Pisano, R. S. Muller, “Silicon-processed overhanging microgripper”, J. Microelectromech. Syst., vol. 1, no. 1, pp. 31–36, 1992.
[61] T. Chen, L. Sun, L. Chen, W. Rong, and X. Li, “A hybrid-type electrostatically driven microgripper with an integrated vacuum tool”, Sensors and Actuators A: Physical, vol. 158, no. 2, pp. 320-327, 2010.
[62] J. Giouroudi, H. Hotzendorfer, J. Kosel, D. Andrijasevic, W. Brenner, “Development of a microgripping system for handling of microcomponents”, Precision Engineering, vol. 32, no. 2, pp. 147-152, 2008.
[63] M. C. Carrozza, A. Menciassi, G. Tiezzi, P. Dario, “The development of a LIGA-microfabricated gripper for micromanipulation tasks”, J. Micromech.Microeng., 8, pp. 141–143, 1998.
[64] S. K. Nah, Z. W. Zhong, “A microgripper using piezoelectric actuation formicro-object manipulation”, Sensors and Actuators A: Physical, vol. 133, no. 1, pp. 218–224, 2007.
[65] M. R. A. Raghavendra, A. S. Kumar, B. Jagdish, “Design and analysis of flexure-hinge parameter in microgripper”, The International Journal of Advanced Manufacturing Technology, vol. 49, pp. 1185-1193, 2010.
[66] L. Dodd, S. Ward, M. Cooke, D. Wood, “The static and dynamic response of SU-8 electrothermal microgrippers of varying thickness”, Microelectronic Engineering, vol. 145, pp. 82-85, 2015.
[67] M. H. Al-Zandi, R. C. Voicu, R. Muller, C. Wang, “Testing and Characterisation of Electrothermal Microgrippers with Embedded Microheaters”, Proc. Conf. Design Test Integration & Packaging of MEMS/MOEMS (DTIP), pp. 256-260, 2016.
[68] R. C. Voicu “Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators”, J Phys Conf Series (JPCS), vol. 757, no. 1, p. 012015, 2016.
[69] Z. Wang, X. Shen, X. Chen, “Design modeling and characterization of a MEMS electrothermal microgripper”, Microsystem Technologies, vol. 21, no. 11, pp. 2307-2314, 2015.
[70] A. Deutschinger, U. Schmid, M. Schneider, W. Brenner, H. Wanzenbock, B. Volland, T. Ivanov, and I. W. Rangelow, “Characterization of an electro-thermal micro gripper and tipsharpening using FIB technique”, Microsyst. Technol., vol. 16, pp. 1901-1908, 2010.
[71] I. Roch, Ph. Bidaud, D. Collard, L. Buchaillot, “Fabrication and characterizationof an SU-8 gripper actuated by a shape memory alloy thin film”, J. Micromech.Microeng, vol. 13, no. 2, pp. 330–336, 2003.
[72] M. Kohl, B. Krevet, E. Just, “SMA microgripper system”, Sensors and Actuators A: Physical, vol. 97-98, pp. 646-652, 2002.
[73] M. S. Mohamed Ali, K. Takahata, “Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process”, Sensors and Actuators A: Physical, vol. 163, no. 1, pp. 363-372, 2010.
[74] J. S. Lee and S. Lucyszyn, “Design and pressure analysis for bulk- micromachined electrothermal hydraulic microactuators using a PCM”, Sensors and Actuators A: Physical, vol. 133, no. 2, pp. 294-300, 2007.
[75] K. Yoshida, N. Tsukamoto, J.-w. Kim, S. Yokota, "A study on a soft microgripper using MEMS-based divided electrode type flexible electrorheological valves", Mechatronics, vol. 29, pp. 103-109, 2015.
[76]楊啟榮,「微致動器原理與應用技術」,國立臺灣師範大學,教學投影片
[77] W. Riethmuller, W. Benecke, “Thermally excited silicon microactuators”, IEEE Transactions on Electron Devices, vol. 35, no. 6, pp. 758-763, 1988.
[78] H. Guckel, J Klein, T. Chistenson, K. Skrobis, M. Laudon, E. G. Lovell, “Thermo-magnetic metal flexture actuators”, Technical digest of IEEE sensor and actuator workshop, Hilton Head Island, USA, pp. 73-75, June 1992.
[79] L. Que, J. Park, Y. Gianchandani, “Bent-beam electro-thermal actuators for high force applications”, Proc. IEEE International Conference on Micro Electro Mechanical Systems, Orlando, USA, pp. 31-36, 1999.
[80] Y. Shabany, “Heat Transfer: Thermal Management of Electronics”, CRC Press, 2009.
[81] J. J. Brown, V. M. Bright, “Thermal actuators”, in: Encyclopedia ofNanotechnology, Springer, Netherlands, pp. 2680–2697, 2012.
[82] 朱雯婷,「單一自由度微型電熱鑷子之設計與分析」,國立中央大學,碩士論文,民國106年。
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明