博碩士論文 103383005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.117.185.121
姓名 謝秉勳(Ping-Hsun Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 三軸磁通閘磁力計之設計與製作
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出了一種基於平面式架構結合磁通傳導器之三軸磁通閘磁感測器。藉由PCB製程,減少線圈平面配置易形成的對位誤差,提高元件的良率與可靠度,且透過後續搭配磁芯與磁傳導器的組裝黏合,簡化製程步驟。經由平面式磁通閘架構達成二軸磁場感測,並透過磁通傳導器的輔助,匯聚出平面磁通量,將其導入平面磁芯作為第三軸磁場感測依據,消除平面磁芯對於出平面磁場感測的限制。依據不同線圈配置組成的獨立三軸感測模式設計,降低感測軸向間的相互干擾,從而有效實現了三軸磁場感測能力。
透過模擬分析與實驗量測,確認磁芯磁化狀態,並針對元件參數進行最佳化,改善靈敏度與線性範圍。所提出的磁通閘磁感測器元件在0-140 μT的線性範圍內,具有x軸靈敏度404.6 V/T;y軸靈敏度399.3 V/T;z軸靈敏度112.2 V/T,其非線性度小於5%。此外,三軸皆具備磁場分量感測能力。
摘要(英) In this paper, a three-axis fluxgate magnetic sensor based on a planar construction and assembled with magnetic core and flux conductor is proposed. Through the PCB manufacturing process, the yield and reliability of the components are improved, and the alignment error of the coil configuration is reduced. The assembly and bonding of the flux conductor simplify the process steps. By using the planar magnetic fluxgate with two-axis sensing capability, with the assistance of the magnetic conductor, the planar magnetic flux is collected and transported into the planar core, eliminating the limitation of the planar magnetometer for out-of-plane magnetic field sensing. The design of the separated three-axis sensing mode reduces the axial interference and effectively achieves the three-axis magnetic field sensing. Through simulation analysis and experimental measurement, confirm the magnetization state of the magnetic core, and optimize the component parameters to improve the sensitivity and linear range. The presented sensor shows the 404.6 V/T sensitivity for the x-axis, 399.3 V/T sensitivity for the y-axis, and 112.2 V/T sensitivity for the z-axis with nonlinearity less than 5% in the linear range of 0-140 μT. Furthermore, the sensing of vectorial magnetic field was demonstrated in three axes.
關鍵字(中) ★ 磁力計
★ 磁通閘
關鍵字(英) ★ magnetometer
★ fluxgate
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
1.3 磁感測器 3
1.4 文獻回顧 5
1.5 研究方向 14
第二章 基礎理論 15
2.1 運作原理 15
2.2 磁化曲線 17
2.3 平面式磁通閘 21
2.4 磁通傳導器 27
第三章 研究方法 28
3.1 同平面磁場感測 28
3.1.1 元件架構 28
3.1.2 製作流程 29
3.1.3 實驗結果與討論 32
3.1.4 結論 37
3.2 出平面磁場感測 38
3.2.1 運作原理 38
3.2.2 製作流程 41
3.2.3 實驗結果與討論 43
3.2.4 結論 47
3.3 三軸磁場感測 48
3.4 鎖相放大電路 51
3.4.1 鎖相放大器簡介 51
3.4.2 解調器 52
第四章 元件設計與模擬分析 54
4.1 模擬環境介紹 54
4.1.1 模擬流程 54
4.1.2 三維模型 55
4.1.3 材料性質 56
4.1.4 邊界條件設定 56
4.1.5 磁芯參數設定 57
4.2 元件特性模擬 59
4.2.1 激發線圈 59
4.2.2 磁通傳導器 61
4.3 元件設計 64
4.3.1 設計規範與考量 64
4.3.2 元件佈局 67
第五章 實驗與量測 69
5.1 量測系統架構 69
5.1.1 亥姆霍茲線圈 70
5.1.2 磁場校正 71
5.2 波形分析 72
5.3 元件特性分析 80
5.3.1 線性定義 80
5.3.2 電流 81
5.3.3 頻率 85
5.3.4 磁傳導器 89
5.3.5 三軸磁場 100
5.3.6 角度 102
5.3.7 雜訊分析 103
5.4 討論 105
第六章 結論與未來展望 107
6.1 結論 107
6.2 未來展望 108
參考文獻 109
參考文獻 [1] J. Fraden, Handbook of modern sensors. 2010, New York: Springers.
[2] A.L. Herrera-May, L.A. Aguilera-Cortes, P.J. Garcia-Ramirez, and E. Manjarrez, Resonant Magnetic Field Sensors Based On MEMS Technology. Sensors (Basel), 2009. 9(10): p. 7785-813.
[3] S. Tumanski, Induction coil sensors—a review. Measurement Science and Technology, 2007. 18(3): p. R31-R46.
[4] Z.B. Randjelovic, M. Kayal, R. Popovic, and H. Blanchard, Highly sensitive Hall magnetic sensor microsystem in CMOS technology. IEEE Journal of Solid-State Circuits, 2002. 37(2): p. 151-159.
[5] L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, and M.C. Wurz, Recent Developments of Magnetoresistive Sensors for Industrial Applications. Sensors, 2015. 15(11).
[6] J.E. Lenz, A review of magnetic sensors. Proceedings of the IEEE, 1990. 78(6): p. 973-989.
[7] M. Vopálenský, P. Ripka, and A.n. Platil, Precise magnetic sensors. Sensors and Actuators A: Physical, 2003. 106(1-3): p. 38-42.
[8] J. Lenz and S. Edelstein, Magnetic sensors and their applications. IEEE Sensors Journal, 2006. 6(3): p. 631-649.
[9] V.C. Kapsalis, Advances in Magnetic Field Sensors. Journal of Physics: Conference Series, 2017. 939: p. 012026.
[10] P. Ripka, Advances in fluxgate sensors. Sensors and Actuators A: Physical, 2003. 106(1): p. 8-14.
[11] F. Primdahl, The fluxgate magnetometer. Journal of Physics E: Scientific Instruments, 1979. 12(4): p. 241-253.
[12] V.V. Vacquier, Apparatus for responding to magnetic fields. 1946.
[13] C. Moldovanu, P. Brauer, O.V. Nielsen, and J.R. Petersen, The noise of the Vacquier type sensors referred to changes of the sensor geometrical dimensions. Sensors and Actuators A: Physical, 2000. 81(1): p. 197-199.
[14] J. Burger, The theoretical output of a ring core fluxgate sensor. IEEE Transactions on Magnetics, 1972. 8(4): p. 791-796.
[15] F. Primdahl, B. Hernando, O.V. Nielsen, and J.R. Petersen, Demagnetising factor and noise in the fluxgate ring-core sensor. Journal of Physics E: Scientific Instruments, 1989. 22(12): p. 1004-1008.
[16] D.M. Miles, M. Ciurzynski, D. Barona, B.B. Narod, J.R. Bennest, A. Kale, M. Lessard, D.K. Milling, J. Larson, and I.R. Mann, Low-noise permalloy ring cores for fluxgate magnetometers. Geosci. Instrum. Method. Data Syst., 2019. 8(2): p. 227-240.
[17] M. Janosek, Parallel Fluxgate Magnetometers, in High Sensitivity Magnetometers, A. Grosz, M.J. Haji-Sheikh, and S.C. Mukhopadhyay, Editors. 2017, Springer International Publishing: Cham. p. 41-61.
[18] C. Hinnrichs, C. Pels, and M. Schilling, Noise and linearity of a fluxgate magnetometer in racetrack geometry. 2000. 87(9): p. 7085-7087.
[19] C. Hinnrichs, J. Stahl, K. Kuchenbrandt, and M. Schilling, Dependence of sensitivity and noise of fluxgate sensors on racetrack geometry. IEEE Transactions on Magnetics, 2001. 37(4): p. 1983-1985.
[20] M. Djamal, E. Sanjaya, Yulkifli, and Ramli. Development of fluxgate sensors and its applications. in 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering. 2011.
[21] E. Delevoye, M. Audoin, M. Beranger, R. Cuchet, R. Hida, and T. Jager, Microfluxgate sensors for high frequency and low power applications. Sensors and Actuators A: Physical, 2008. 145-146: p. 271-277.
[22] T.M. Liakopoulos and C.H. Ahn, A micro-fluxgate magnetic sensor using micromachined planar solenoid coils1Paper presented as part of the SSAW-98 Workshop.1. Sensors and Actuators A: Physical, 1999. 77(1): p. 66-72.
[23] O. Dezuari, E. Belloy, S.E. Gilbert, and M.A.M. Gijs, New hybrid technology for planar fluxgate sensor fabrication. IEEE Transactions on Magnetics, 1999. 35(4): p. 2111-2117.
[24] L. Perez, C. Aroca, P. Sánchez, E. López, and M.C. Sánchez, Planar fluxgate sensor with an electrodeposited amorphous core. Sensors and Actuators A: Physical, 2004. 109(3): p. 208-211.
[25] H.-S. Park, J.-S. Hwang, W.-Y. Choi, D.-S. Shim, K.-W. Na, and S.-O. Choi, Development of micro-fluxgate sensors with electroplated magnetic cores for electronic compass. Sensors and Actuators A: Physical, 2004. 114(2): p. 224-229.
[26] C.-C. Lu, J. Huang, P.-K. Chiu, S.-L. Chiu, and J.-T. Jeng, High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design. Sensors, 2014. 14(8).
[27] A. Baschirotto, F. Borghetti, E. Dallago, P. Malcovati, M. Marchesi, E. Melissano, P. Siciliano, and G. Venchi, Fluxgate magnetic sensor and front-end circuitry in an integrated microsystem. Sensors and Actuators A: Physical, 2006. 132(1): p. 90-97.
[28] A. Baschirotto, E. Dallago, P. Malcovati, M. Marchesi, and G. Venchi, A Fluxgate Magnetic Sensor: From PCB to Micro-Integrated Technology. IEEE Transactions on Instrumentation and Measurement, 2007. 56(1): p. 25-31.
[29] P. Ripka, S. Kawahito, S.O. Choi, A. Tipek, and M. Ishida, Micro-fluxgate sensor with closed core. Sensors and Actuators A: Physical, 2001. 91(1): p. 65-69.
[30] S.O. Choi, S. Kawahito, Y. Matsumoto, M. Ishida, and Y. Tadokoro, An integrated micro fluxgate magnetic sensor. Sensors and Actuators A: Physical, 1996. 55(2): p. 121-126.
[31] I. Vincueria, M. Tudanca, C. Aroca, E. Lopez, M.C. Sanchez, and P. Sanchez, Flux-gate sensor based on planar technology. IEEE Transactions on Magnetics, 1994. 30(6): p. 5042-5045.
[32] V.S. Luong, Y. Su, C. Lu, J. Jeng, J. Hsu, M. Liao, J. Wu, M. Lai, and C. Chang, Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors. IEEE Transactions on Nanotechnology, 2018. 17(1): p. 11-25.
[33] P. Brauer, T. Risbo, J.M.G. Merayo, and O.V. Nielsen, Fluxgate sensor for the vector magnetometer onboard the `Astrid-2′ satellite. Sensors and Actuators A: Physical, 2000. 81(1): p. 184-188.
[34] C. Petridis, P.D. Dimitropoulos, and E. Hristoforou, New Magnetic Field Sensor Based on Combined Flux-Gate/Hall-Effect Arrangement. IEEE Sensors Journal, 2009. 9(2): p. 128-134.
[35] J. Kubik, J. Vcelak, T.O. Donnell, and P. McCloskey, Triaxial Fluxgate Sensor Excitation and Core Shape Study. IEEE Sensors Journal, 2009. 9(12): p. 1971-1978.
[36] 陳鴻名, 平面雙軸式磁通閘之分析與應用. 2014, 國立中央大學.
[37] 許皓雲, 平面雙軸式磁通閘之製作與改良. 2016, 國立中央大學.
[38] F.C.S. da Silva, S.T. Halloran, L. Yuan, and D.P. Pappas, A z-component magnetoresistive sensor. Applied Physics Letters, 2008. 92(14): p. 142502.
[39] J. Deak. Practical Tunneling Magnetoresistive Z-Axis Sensors. 2015.
[40] M. Suzuki, T. Fukutani, T. Hirata, S. Aoyagi, S. Shingubara, H. Tajiri, Y. Yoshikawa, and T. Nagahata. Triaxis magnetoresistive (MR) sensor using permalloy plate of distorting magnetic field. in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). 2010.
[41] J. Zhao, W. Tian, Q. Zhang, M. Pan, J. Hu, D. Chen, and F. Luo, Designs of Slope Magnetic Flux Guides for 3-Axis Magnetic Sensor. IEEE Transactions on Magnetics, 2013. 49(10): p. 5301-5303.
[42] J. Zhao, J. Hu, W. Tian, J. Hu, and M. Pan, Designs of Novel Magnetic Flux Guides for Three-Axis Magnetic Sensor. IEEE Transactions on Magnetics, 2015. 51(8): p. 1-6.
[43] A. Beyzavi and N.-T. Nguyen, Modeling and optimization of planar microcoils. Journal of Micromechanics and Microengineering, 2008. 18(9): p. 095018.
[44] A. Garcı́a, J.A. Carrasco, J.F. Soto, F. Maganto, and C. Morón, A method for calculating the magnetic field produced by a coil of any shape. Sensors and Actuators A: Physical, 2001. 91(1): p. 230-232.
[45] M. Misakian, Equations for the Magnetic Field Produced by One or More Rectangular Loops of Wire in the Same Plane. Journal of research of the National Institute of Standards and Technology, 2000. 105(4): p. 557-564.
[46] M. Aldoumani and N. Aldoumani, Fluxgate Magnetometer with an Orthogonal Flux Guide. International Journal of Computer Applications, 2018. 180: p. 7-12.
[47] P.-H. Hsieh and S.-J. Chen, Multilayered vectorial fluxgate magnetometer based on PCB technology and dispensing process. Measurement Science and Technology, 2019. 30(12): p. 125101.
[48] P.-H. Hsieh and S.-J. Chen, An out-of-plane sensing fluxgate magnetic field sensor with an assisted flux conductor. AIP Advances, 2021. 11(1): p. 015217.
[49] A. Tipek, P. Ripka, T. O’Donnell, and J. Kubik, PCB technology used in fluxgate sensor construction. Sensors and Actuators A: Physical, 2004. 115(2): p. 286-292.
[50] M. Janošek and P. Ripka, PCB sensors in fluxgate magnetometer with controlled excitation. Sensors and Actuators A: Physical, 2009. 151(2): p. 141-144.
[51] L. Rovati and S. Cattini, Zero-Field Readout Electronics for Planar Fluxgate Sensors Without Compensation Coil. IEEE Transactions on Industrial Electronics, 2012. 59(1): p. 571-578.
[52] IPC, IPC-2221 Generic Standard on Printed Board Design. 2012, Association Connecting Electronics Industries.
[53] T.J. Sumner, J.M. Pendlebury, and K.F. Smith, Convectional magnetic shielding. Journal of Physics D: Applied Physics, 1987. 20(9): p. 1095-1101.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2021-5-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明