博碩士論文 103384601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.139.238.67
姓名 蕭晴雪(Benjawan Moongraksathum)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 二氧化鈦改質溶膠及其在抗菌的應用
(Modified TiO2 Sols for Antibacterial Application)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中首先以溶膠凝膠法製備一系列之二氧化鈰-二氧化鈦材料與含銀之二氧化鈰-二氧化鈦材料。除了藉由X光粉末繞射儀、穿透式電子顯微鏡、紫外-可見光光譜儀、原子力顯微鏡、掃描式電子顯微鏡與X光電子/歐傑電子能譜儀等儀器分析材料之性質之外,再以紫外光與可見光照射條件下,亞甲基藍降解來測試材料之光觸媒活性。其中,二氧化鈰-二氧化鈦重量比為0.05比1為活性效能最高之樣品。藉由添加二氧化鈰後形成鈰-氧-鈦之鍵結改變二氧化鈦的吸收光譜能階,達到較高的光觸媒活性效能。最後探討在抗菌應用方面,二氧化鈰-二氧化鈦材料於照光條件下有抗菌功效,但添加銀之二氧化鈰-二氧化鈦材料可達到在照紫外光條件與無光環境下均有抗菌效能。藉由大腸桿菌(Escherichia coli (OP50), 革蘭氏陰性細菌)與耐甲氧金黃色葡萄球菌 (methicillin-resistant Staphylococcus aureus (USA300), 革蘭氏陽性細菌)來進行二氧化鈰-二氧化鈦系列材料抗菌活性測試。其中,含銀之二氧化鈰-二氧化鈦材料之樣品,在UVA照射30分鐘後與暗條件下,大腸桿菌與MRSA之抗菌效能均可大於99.99%。此材料之抗菌活性效能相較於純二氧化鈦、二氧化鈰-二氧化鈦與純銀之材料相比,不論應用於革蘭氏陽性細菌或是革蘭氏陰性細菌,其抗菌結果均達到最高的效能。
摘要(英) A series of CeO2–TiO2 mixed oxides and anatase TiO2 co‒doped with Ag and CeO2 (Ag/CeO2‒TiO2) were prepared by the peroxo sol-gel method. X-ray diffraction, transmission electron microscopy, UV–vis spectroscopy, atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the characteristics of the as-prepared materials in order to determine the influence of adding CeO2 to TiO2 on the photocatalytic degradation of methylene blue aqueous solution under both UV and visible light irradiation. It was observed that the highest photocatalytic degradation activities with respect to methylene blue under both UV and visible light irradiation were exhibited for an optimum CeO2–TiO2 weight ratio of 0.05. The high photocatalytic activity was because of changes in the spectral absorption of material, which was attributed to the heterojunction formed by TiO2 and CeO2 networks via Ti–O–Ce bonds after addition of CeO2. However, for antibacterial application, the activity of CeO2–TiO2 mixed oxide was limited to conditions of irradiation; thus, silver was used to enhance antibacterial activity. The antibacterial activities of the samples were tested against two different bacteria: Escherichia coli (OP50), a Gram-negative organism and methicillin-resistant Staphylococcus aureus (USA300), a Gram-positive organism. The antibacterial effectiveness of the Ag/CeO2‒TiO2 coating was > 99.99%, i.e. it was extremely effective against both E. coli (OP50) and S. aureus (USA300) after either 30 min of illumination with UVA radiation or 24-hour of incubation in the dark. The Ag/CeO2‒TiO2 coating was found to be significantly more active than pure TiO2 and TiO2 doped with CeO2 or Ag alone. Therefore, Ag/CeO2‒TiO2 can be used as a coating material for the disinfection of both Gram-positive and Gram-negative bacteria.
關鍵字(中) ★ 二氧化鈦
★ 抗菌
★ 過氧化溶膠凝膠法
關鍵字(英) ★ Peroxo sol-gel
★ Titania
★ Ceria
★ Antibacterial
★ Binary oxide
論文目次 TABLE OF CONTENTS

中文摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER I INTRODUCTION 1
CHAPTER II LITERATURE REVIEW 4
2.1 Heterogeneous titanium dioxide (TiO2) photocatalysis 5
2.1.1 Polymorphs of TiO2 5
2.1.2 Mechanistic study and time–resolved analysis of TiO2 photocatalysis 5
2.2 Photo-induced superhydrophilicity: the unique aspects of TiO2 8
2.3 Doping lanthanide ions/oxides into TiO2: surface modification with electron acceptor groups 11
2.3.1 Historical Background of CeO2 12
2.3.2 Coupling CeO2 with TiO2 13
2.3.3 Interaction between CeO2 and TiO2 materials and their structures 17
2.3.4 Photocatalytic mechanisms of TiO2 and binary oxide of CeO2‒TiO2 19
2.3.4.1 Mineralization reaction by TiO2 19
2.3.4.2 Photosensitization reaction for TiO2 20
2.3.4.3 Photocatalysis reactions for CeO2‒TiO2 nanocrytallites under UV and visible irradiation 21
2.3.4.4 Optimum loading of ceria 23
2.3.5 Disinfection property of TiO2 and CeO2-modified TiO2 24
References26
CHAPTER III EXPERIMENTAL PROCEDURES 34
3.1 Materials 34
3.2 Synthesis of TiO2 and CeO2‒TiO2 sols 34
3.3 Preparation of TiO2 and CeO2‒TiO2 films 35
3.4 Catalysts characterization 35
3.4.1 Transmission electron microscopy (TEM) and high-resolution electron microscopy (HRTEM) 35
3.4.2 X-Ray photoelectron spectroscopy (XPS) 36
3.4.3 Scanning electron microscopy (SEM) 36
3.4.4 X-ray diffraction (XRD) 36
3.4.5 UV-visible spectrophotometry 38
3.5 Photocatalytic degradation of methylene blue 38
3.6 Antibacterial activity tests 40
CHAPTER IV PREPARATION AND CHARACTERIZATION OF SiO2–TiO2 NEUTRAL SOL BY PEROXO SOL-GEL METHOD AND ITS APPLICATION ON PHOTOCATALYTIC DEGRADATION 42
ABSTRACT 42
4.1 Introduction 43
4.2 Experimental procedure 44
4.2.1 Materials 44
4.2.2 Synthesis of TiO2 and SiO2‒TiO2 sols 44
4.2.3 Preparation of TiO2 and SiO2‒TiO2 films 45
4.2.4 Catalysts characterization 45
4.2.5 Photocatalytic reaction 46
4.3 Results and discussion 46
4.3.1 Characteristics of TiO2 and SiO2‒TiO2 sols 46
4.3.2 Characterization of TiO2 and SiO2‒TiO2 sols 47
4.3.3 Characteristic of TiO2 and SiO2‒TiO2 thin films 51
4.3.4 Photocatalytic degradation of methylene blue aqueous solution 55
4.4. Conclusions 59
References 60
CHAPTER V CeO2–TiO2 MIXED OXIDE THIN FILMS WITH ENHANCED PHOTOCATALYTIC DEGRADATION OF ORGANIC POLLUTANTS 64
ABSTRACT 64
5.1 Introduction 65
5.2 Experimental procedure 67
5.2.1 Materials 67
5.2.2 Synthesis of TiO2 and CeO2–TiO2 sols 67
5.2.3 Preparation of TiO2 and CeO2–TiO2 films 68
5.2.4 Catalyst characterization 68
5.2.5 Photocatalytic degradation of methylene blue 69
5.3 Results and discussion 69
5.3.1 Characteristics and characterization of TiO2 and CeO2–TiO2 sols 69
5.3.2 UV–vis absorption spectroscopy 73
5.3.3 X-ray photoelectron spectroscopy analysis of the resultant films 73
5.3.4 Atomic force microscopy analysis 76
5.3.5 Photocatalytic degradation of methylene blue aqueous solution 78
5.4. Conclusions 82
References 83
CHAPTER VI ANATASE TiO2 CO-DOPED WITH SILVER AND CERIA FOR ANTIBACTERIAL APPLICATION 88
ABSTRACT 88
6.1 Introduction 89
6.2 Experimental section 90
6.2.1 Materials 90
6.2.2 Synthesis of TiO2, and Ag and CeO2 co-doped TiO2 sols 90
6.2.3 Preparation of films 91
6.2.4 Characterisation 92
6.2.5 Study of antibacterial activity 92
6.3 Results and discussion 94
6.3.1 Characteristics of the Ag/CeO2–TiO2 particles 94
6.3.2 Characterisation of the as-prepared films 96
6.3.3 Antibacterial properties of thin films 100
6.4. Conclusions 104
References 105
CHAPTER VII CONCLUSIONS 110
參考文獻 References of Chapter II

[1] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1–21.
[2] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.
[3] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B Environ. 31 (2001) 145–157.
[4] A. Preuss, R. Gruehn, Preparation and structure of cerium titatnates Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24, J. Solid State Chem. 110 (1994) 363‒369.
[5] B. Jiang, S. Zhang, X. Guo, B. Jin, Y. Tian, Preparation and photocatalytic activity of CeO2/TiO2 interface composite film, Appl. Surf. Sci. 255 (2009) 5975–5978.
[6] B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light, Surf. Sci. 595 (2005) 203–211.
[7] B. Moongraksathum, Y.-W. Chen, Preparation and characterization of SiO2–TiO2 neutral sol by peroxo sol–gel method and its application on photocatalytic degradation, J. Sol-Gel Sci. Technol. 77 (2016) 288–297.
[8] B. Moongraksathum, P.-T. Hsu, Y.-W. Chen, Photocatalytic activity of ascorbic acid-modified TiO2 sol prepared by the peroxo sol–gel method, J. Sol-Gel Sci. Technol. 78 (2016) 647–659.
[9] B.M. Reddy, A. Khan, Y. Yamade, T. Kobayashi, S. Loridant, J.C. Volta, Raman Spectroscopy , X-ray photoelectron spectroscopy , and other techniques, J. Phys. Chem. B. 2 (2003) 11475–11484.
[10] B.M. Reddy, A. Khan, Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 mixed oxides: Influence of supporting oxide on thermal stability and oxygen storage properties of ceria, Catal. Surv. from Asia. 9 (2005) 155–171.
[11] B. Zhao, Y.W. Chen, Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity, J. Phys. Chem. Solids. 72 (2011) 1312–1318.
[12] C. Gionco, E. Giamello, L. Mino, M.C. Paganini, The interaction of oxygen with the surface of CeO2 –TiO2 mixed systems: an example of fully reversible surface-to-molecule electron transfer, Phys. Chem. Chem. Phys. 16 (2014) 21438–21445.
[13] F.E. Ghodsi, H. Dadvar, G. Khayati, Optical, surface morphological, and antibacterial properties of nanostructured TiO2: M (M = Fe, Ce, Ag ) Thin Films, Int. J. Multidiscip. Sci. Emerg. Res. 3 (2014) 951–956.
[14] G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue, Indian J. Chem. Sect. A Inorganic, Bio-Inorganic, Phys. Theor. Anal. Chem. 48 (2009) 480–488.
[15] G. Xiao, J. Zhou, X. Huang, B. Shi, Facile synthesis of mesoporous sulfated Ce/TiO2 nanofiber solid superacid with nanocrystalline frameworks by using collagen fibers as a biotemplate and its application in esterification, RSC Adv. 4 (2014) 4010–4019.
[16] G. Xiao, X. Huang, X. Liao, B. Shi, One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis, J. Phys. Chem. C. 117 (2013) 9739−9746.
[17] H. Eskandarloo, A. Badiei, M.A. Behnajady, TiO2/CeO2 Hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables, Ind. Eng. Chem. Res. 53 (2014) 7847–7855.
[18] H. He, C. Liu, K.D. Dubois, T. Jin, M.E. Louis, G. Li, Enhanced charge separation in nanostructured TiO2 materials for photocatalytic and photovoltaic applications, Ind. Eng. Chem. Res. 51 (2012) 11841–11849.
[19] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, et al., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal. B Environ. 39 (2002) 75–90.
[20] H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, Y. Su, Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light, J. Photochem. Photobiol. A Chem. 223 (2011) 157–164.
[21] H. Ohtsuka, Pt-Rh/CeO2‒Al2O3 for controlling emissions from natural gas engines : three-way catalytic activity at low temperatures and effects of SO2 aging, Emiss. Control Sci. Technol. 1 (2015) 108–116.
[22] H. Yang, K. Zhang, R. Shi, A. Tang, Sol-Gel synthesis and photocatalytic activity of CeO2/TiO2 nanocomposites, J. Am. Ceram. Soc. 90 (2007) 1370–1374.
[23] J.C.S. Dalton, B.P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc., Dalton Trans. 17 (1976) 1686‒1698.
[24] J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Spectroscopic studies of interfacial structures of CeO2 – TiO2 mixed oxides, Appl. Surf. Sci. 253 (2007) 8952–8961.
[25] J. Gagnon, M.J.D. Clift, D. Vanhecke, I.E. Widnersson, S. Abram, R.A. Caruso, et al., Synthesis, characterization, antibacterial activity and cytotoxicity of hollow TiO2-coated CeO2 nanocontainers encapsulating silver nanoparticles for controlled silver release, J. Mater. Chem. B. 4 (2016) 1166–1174.
[26] J. Kašpar, P. Fornasiero, M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catal. Today. 50 (1999) 285–298.
[27] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, et al., Understanding TiO2 photocatalysis : mechanisms and materials, Chem. Rev. 114 (2014) 9919–9986.
[28] K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surf. Coat. Technol. 191 (2005) 155‒160.
[29] K. Guan, B. Lu, Y. Yin, Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films, Surf. Coat. Technol. 173 (2003) 219–223.
[30] K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun, Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environ. Sci. Technol. 35 (2001) 1544–1549.
[31] L. Wei, H. Wang, Z. Wang, M. Yu, S. Chen, Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions, RSC Adv. 5 (2015) 74347–74352.
[32] L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, et al., Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3, Appl. Catal. B Environ. 165 (2015) 589–598.
[33] M. Martos, B. Julián-López, J.V. Folgado, E. Cordoncillo, P. Escribano, Sol-gel synthesis of tunable cerium titanate materials, Eur. J. Inorg. Chem. (2008) 3163–3171.
[34] M. Reli, N. Ambrožová, M. Šihor, L. Matějová, L. Obalová, A. Kotarba, et al., Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia, Appl. Catal. B Environ. 178 (2015) 108–116.
[35] M.E. Contreras-García, M.L. García-Benjume, V.I. MacÍas-Andrés, E. Barajas-Ledesma, A. Medina-Flores, M.I. Espitia-Cabrera, Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis, Mater. Sci. Eng. B. 183 (2014) 78–85.
[36] M.J. Muñoz-Batista, M. de los Milagros Ballari, A. Kubacka, A.E. Cassano, O.M. Alfano, M. Fernández-García, Acetaldehyde degradation under UV and visible irradiation using CeO2‒TiO2 composite systems: Evaluation of the photocatalytic efficiencies, Chem. Eng. J. 255 (2014) 297–306.
[37] M.J. Muñoz-Batista, M.N. Gómez-Cerezo, A. Kubacka, D. Tudela, M. Fernández-García, Role of interface contact in CeO2−TiO2 photocatalytic composite materials, ACS Catal. 4 (2014) 63–72.
[38] M.J. Muñoz-Batista, M. Ferrer, M. Fernández-garcía, A. Kubacka, Abatement of organics and Escherichia coli using CeO2–TiO2 composite oxides: Ultraviolet and visible light performances, Appl. Catal. B Environ. 155 (2014) 350–359.
[39] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res. 44 (2010) 2997–3027.
[40] M.R. Mohammadi, D.J. Fray, Nanostructured TiO2-CeO2 mixed oxides by an aqueous sol-gel process: Effect of Ce:Ti molar ratio on physical and sensing properties, Sensors Actuators, B Chem. 150 (2010) 631–640.
[41] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33–177.
[42] P. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol. 65 (1999) 4094–4098.
[43] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature. 388 (1997) 431‒432.
[44] R. Verma, S.K. Samdarshi, J. Singh, Hexagonal ceria located at the interface of anatase/rutile TiO2 superstructure optimized for high activity under combined UV and visible-light irradiation, J. Phys. Chem. C. 119 (2015) 23899–23909.
[45] S. Mittal, A.K. Pandey, Cerium oxide nanoparticles induced toxicity in human lung cells : role of ROS mediated DNA damage and apoptosis, Biomed. Res. Int. (2014) 891934.
[46] S.D. Richardson, A.D. Thruston, T.W. Collette, J.C. Ireland, Identification of TiO2/UV Disinfection byproducts in drinking water, Environ. Sci. Technol. 30 (1996) 3327–3334.
[47] S.J. Schmieg, D.N. Belton, Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst, Appl. Catal., B. 6 (1995) 127–144.
[48] T. Cai, Y. Liao, Z. Peng, Y. Long, Z. Wei, Q. Deng, Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2, J. Environ. Sci. 21 (2009) 997–1004.
[49] T. Kidchob, L. Malfatti, D. Marongiu, S. Enzo, P. Innocenzi, An alternative sol-gel route for the preparation of thin films in CeO2‒TiO2 binary system, Thin Solid Films. 518 (2010) 1653–1657.
[50] T. Liu, X. Li, F. Li, Enhanced photocatalytic activity of Ce3+–TiO2 hydrosols in aqueous and gaseous phases, Chem. Eng. J. 157 (2010) 475–482.
[51] T. López, F. Rojas, R. Alexander-Katz, F. Galindo, A. Balankin, A. Buljan, Porosity, structural and fractal study of sol-gel TiO2-CeO2 mixed oxides, J. Solid State Chem. 177 (2004) 1873–1885.
[52] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2–based materials, Chem. Rev. 116 (2016) 5987‒6041.
[53] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, J. Colloid Interface Sci. 315 (2007) 382–388.
[54] T. Yu, X. Tan, L. Zhao, Y. Yin, P. Chen, J. Wei, Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO2 nanoparticles, Chem. Eng. J. 157 (2010) 86–92.
[55] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53–229.
[56] W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors, J. Phys. Chem. Lett. 3 (2012) 629–639.
[57] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891−2959.
[58] X. Li, P. Liu, P. Mao, M. Xing, J. Zhang, Preparation of homogeneous nitrogen–doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis, Appl. Catal., B. 164 (2015) 352–359.
[59] X. Nie, S. Zhuo, G. Maeng, K. Sohlberg, Doping of TiO2 polymorphs for altered optical and photocatalytic properties, Int. J. Photoenergy. Article ID 294042 (2009) 1‒22.
[60] Y. Xie, C. Yuan, Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation, Appl. Catal. B Environ. 46 (2003) 251–259.
[61] Y. Xie, C. Yuan, Characterization and photocatalysis of Eu3+–TiO2 sol in the hydrosol reaction system, Mater. Res. Bull. 39 (2004) 533–543.
[62] Y. Xie, C. Yuan, X. Li, Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B. 117 (2005) 325–333.
[63] Y.H. Leung, M.M.N. Yung, A.M.C. Ng, A.P.Y. Ma, S.W.Y. Wong, M. Guo, et al., Toxicity of CeO2 nanoparticles– the effect of nanoparticle properties, J. Photoch. Photobio. B. 145 (2015) 48–59.
[64] Y.-W. Chen, J.-Y. Chang, B. Moongraksathum, Preparation of vanadium-doped titanium dioxide neutral sol and its photocatalytic applications under UV light irradiation, J. Taiwan Inst. Chem. Eng. 52 (2015) 140–146.
[65] Z. Liu, B. Guo, L. Hong, H. Jiang, Preparation and characterization of cerium oxide doped TiO2 nanoparticles, J. Phys. Chem. Solids. 66 (2005) 161–167.
[66] Z. Wang, L. Cheng, Effects of doping CeO2 / TiO2 on structure and properties of silicate glass, J. Alloys Compd. 597 (2014) 167–174.

References of Chapter IV

[1] K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys. 44 (2005) 8269–8285.
[2] M. Ni, M. Leung, D. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energ. Rev. 11 (2007) 401-425.
[3] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253–278.
[4] R. Niishiro, A. Kudo, Development of visible-light-driven TiO2 and SrTiO3 photocatalysts doped with metal cations for H2 or O2 evolution, Solid State Phenom. 162 (2010) 29-40.
[5] M. Machida, K. Norimoto, T. Watanabek, K. Hashimoto, A. Fujishima, The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst, J. Mater. Sci. 34 (1999) 2569-2574.
[6] K. Guan, B. Lu, Y. Yin, Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films, Surf. Coat. Technol. 173 (2003) 219–223.
[7] K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surf. Coat. Technol. 191 (2005) 155-160.
[8] X. Zhang, A. Fujishima, M. Jin, A.V. Emeline, T. Murakami, Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties, J. Phys. Chem. B. 110 (2006) 25142-25148.
[9] H. Yaghubi, N. Taghavinia, E.K. Alamdari, Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties, Surf. Coat. Tech. 2004 (2010) 1562–1568.
[10] C.H. Huang, H.L. Bai, Y.L. Huang, S.L. Liu, S. Yen, Y.H. Tseng, Synthesis of neutral SiO2/TiO2 hydrosol and its application as antireflective self-cleaning thin film, Int. J. Photoenergy. 2012 (2012) 1-8.
[11] C.H. Huang, H.L. Bai, Y.L. Huang, S.L. Liu, Y.H. Tseng, Synthesis of neutral SiO2/TiO2 hydrosol and its photocatalytic degradation of nitric oxide gas, Micro. Nano. Lett. 6 (2011) 646–649.
[12] J.L. Shie, C.Y. Chang, C.S. Chiou, Y.H. Chen, Y.H. Chen, Y.W. Chen, C.C. Chang, Photocatalytic reduction of gaseous and solution CO2 to energy products using Ag/TiO2 and Cu/TiO2 in CuCl2 solution, Sustain. Environ. Res. 22 (2012) 237‒246.
[13] P.V. Kamat, Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design, J. Phys. Chem. Lett. 3 (2012) 663‒672.
[14] G. Dagan, S. Sampath, O. Lev, Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments, Chem. Mater. 7 (1995) 446‒453.
[15] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard Mater. 170 (2009) 520–529.
[16] A.R. Malagutti, H. Mourão, J.R. Garbin, C. Ribeiro, Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes, Appl. Catal., B. 90 (2009) 205‒212.
[17] S. Saha, J.M. Wang, A. Pal, Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green, Sep. Purif. Technol. 89 (2012) 147‒159.
[18] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C. 1 (2000) 1‒21.
[19] N. Sasirekha, B. Rajesh, Y.W. Chen. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent, Thin Solid Films. 518 (2009) 43‒48.
[20] B. Zhao, Y.W. Chen, Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity, J. Phys. Chem. Solids. 72 (2011) 1312–1318.
[21] Y.W. Chen, J.Y. Chang, B. Moongraksathum, Preparation of vanadium-doped titanium dioxide neutral sol and its photocatalytic applications under UV light irradiation, J. Taiwan Inst. Chem. Eng. 52 (2015) 140‒146.
[22] M. Inada, N. Enomoto, J. Hojo, Fabrication and structural analysis of mesoporous silica–titania for environmental purification, Micropor. Mesopor. Mat. 182 (2013) 173‒177.
[23] J. Tauc, R. Grigorovic, A. Vanc, Optical properties and electronic structure of amorphous germanium, Phys. Stat. Sol. 15 (1996) 627‒637.
[24] X. Gao, I.E. Wachs, Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties, Cat. Today. 51 (1999) 233‒254.
[25] G. Lassaletta, A. Fernández, J.P. Espinós, A.R. González-Elipe, Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2‒SiO2 interface composition. J. Phys. Chem. 99 (1995) 1484‒1490.
[26] A.Y. Stakheev, E.S. Shpiro, J. Apijok, XPS and XAES study of TiO2‒SiO2 mixed oxide system, J. Phys. Chem. 97 (1993) 5668‒5672.
[27] C. He, B. Tian, J. Zhang, Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity, J. Colloid Interface Sci. 344 (2010) 382‒389.
[28] K. Tanabe, T. Sumiyoshi, K. Shibata, A new hypothesis regarding the surface acidity of binary metal oxides, B. Chem. Soc. Jpn. 47 (1974) 1064‒1066.
[29] J. Yu, X. Zhao, Effect of substrates on the photocatalytic activity of nanometer TiO2 thin film, Mater. Res. Bull. 35 (2000) 1293‒1301.
[30] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B. 31 (2001) 145–157.
[31] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein orange G, Methyl red, Congo red, Methylene blue) in water by UV-irradiated titania, Appl. Catal., B. 39 (2000) 75–90.

References of Chapter V

[1] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1–21.
[2] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997–3027.
[3] W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors, J. Phys. Chem. Lett. 3 (2012) 629–639.
[4] H. He, C. Liu, K.D. Dubois, T. Jin, M.E. Louis, G. Li, Enhanced charge separation in nanostructured TiO2 materials for photocatalytic and photovoltaic applications, Ind. Eng. Chem. Res. 51 (2012) 11841–11849.
[5] Y.W. Chen, J.Y. Chang, B. Moongraksathum, Preparation of vanadium-doped titanium dioxide neutral sol and its photocatalytic applications under UV light irradiation, J. Taiwan Inst. Chem. Eng. 52 (2015) 140–146.
[6] B. Moongraksathum, P.T. Hsu, Y.W. Chen, Photocatalytic activity of ascorbic acid-modified TiO2 sol prepared by the peroxo sol–gel method, J. Sol-Gel Sci. Technol. 78 (2016) 647–659.
[7] K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun, Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environ. Sci. Technol. 35 (2001) 1544–1549.
[8] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, J. Colloid Interface Sci. 315 (2007) 382–388.
[9] Y. Xie, C. Yuan, Visible light induced photocatalysis of cerium ion modified titania sol and nanocrystallites, J. Mater. Sci. Technol. 20 (2004) 14–18.
[10] Y. Xie, C. Yuan, X. Li, Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B. 117 (2005) 325–333.
[11] G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue, Indian J. Chem. Sect. A Inorganic, Bio-inorganic, Phys. Theor. Anal. Chem. 48 (2009) 480–488.
[12] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2–based materials, Chem. Rev. 116 (2006) 5987–6041.
[13] T. López, F. Rojas, R. Alexander-Katz, F. Galindo, A. Balankin, A. Buljan, Porosity, structural and fractal study of sol-gel TiO2-CeO2 mixed oxides, J. Solid State Chem. 177 (2004) 1873–1885.
[14] H. Eskandarloo, A. Badiei, M.A. Behnajady, TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables, Ind. Eng. Chem. Res. 53 (2014) 7847–7855.
[15] H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, Y. Su, Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light, J. Photochem. Photobiol. A Chem. 223 (2011) 157–164.
[16] Z. Liu, B. Guo, L. Hong, H. Jiang, Preparation and characterization of cerium oxide doped TiO2 nanoparticles, J. Phys. Chem. Solids. 66 (2005) 161–167.
[17] B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light, Surf. Sci. 595 (2005) 203–211.
[18] M.E. Contreras-García, M.L. García-Benjume, V.I. Macías-Andrés, E. Barajas-Ledesma, A. Medina-Flores, M.I. Espitia-Cabrera, Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 183 (2014) 78–85.
[19] M.J. Muñoz-Batista, M. de los Milagros Ballari, A. Kubacka, A.E. Cassano, O.M. Alfano, M. Fernández-García, Acetaldehyde degradation under UV and visible irradiation using CeO2-TiO2 composite systems: Evaluation of the photocatalytic efficiencies, Chem. Eng. J. 255 (2014) 297–306.
[20] C. Gionco, E. Giamello, L. Mino, M.C. Paganini, The interaction of oxygen with the surface of CeO 2–TiO 2 mixed systems: an example of fully reversible surface-to-molecule electron transfer, Phys. Chem. Chem. Phys. 16 (2014) 21438–21445.
[21] H. Yang, K. Zhang, R. Shi, A. Tang, Sol–gel synthesis and photocatalytic activity of CeO2 /TiO2 nanocomposites, J. Am. Ceram. Soc. 90 (2007) 1370–1374.
[22] T. Cai, Y. Liao, Z. Peng, Y. Long, Z. Wei, Q. Deng, Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2, J. Environ. Sci. 21 (2009) 997–1004.
[23] M.R. Mohammadi, D.J. Fray, Nanostructured TiO2-CeO2 mixed oxides by an aqueous sol-gel process: Effect of Ce:Ti molar ratio on physical and sensing properties, Sens. Actuators B Chem. 150 (2010) 631–640.
[24] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891−2959.
[25] N. Sasirekha, B. Rajesh, Y.W. Chen, Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent, Thin Solid Films. 518 (2009) 43–48.
[26] B. Moongraksathum, Y.W. Chen, Preparation and characterization of SiO2–TiO2 neutral sol by peroxo sol–gel method and its application on photocatalytic degradation, J. Sol-Gel Sci. Technol. 77 (2016) 288–297.
[27] J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides, Appl. Surf. Sci. 253 (2007) 8952–8961.
[28] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano. Sci. Eng. 2 (2012) 154–160.
[29] L. Alexander, H.P. Klug, Determination of crystallite size with the X–ray spectrometer, J. Appl. Phys. 21 (1950) 137–142.
[30] B. Jiang, S. Zhang, X. Guo, B. Jin, Y. Tian, Preparation and photocatalytic activity of CeO2/TiO2 interface composite film, Appl. Surf. Sci. 255 (2009) 5975–5978.
[31] R. Verma, S.K. Samdarshi, J. Singh, Hexagonal ceria located at the interface of anatase/rutile TiO2 superstructure optimized for high activity under combined UV and visible-light irradiation, J. Phys. Chem. C. 119 (2015) 23899–23909.
[32] T. Yu, X. Tan, L. Zhao, Y. Yin, P. Chen, J. Wei, Characterization, activity and kinetics of a visible light driven photocatalyst: Cerium and nitrogen co-doped TiO2 nanoparticles, Chem. Eng. J. 157 (2010) 86–92.
[33] G. Xiao, X. Huang, X. Liao, B. Shi, One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis, J. Phys. Chem. C. 117 (2013) 9739−9746.
[34] L.S. Dake, R.J. Lad, Electronic and chemical interactions at aluminum/TiO2 (110) interfaces, Surf. Sci. 289 (1993) 297–306.
[35] Y. Zhou, C. Chen, N. Wang, Y. Li, H. Ding, Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability, J. Phys. Chem. C. 120 (2016) 6116–6124.
[36] L. Xiong, J. Li, B. Yang, Y. Yu, Ti3+ in the surface of titanium dioxide: Generation, properties and photocatalytic application, J. Nanomater. 2012 (2012) 1–13.
[37] S. Watanabe, X. Ma, C. Song, V. Pennsyl, Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD, J. Phys. Chem. C. 113 (2009) 14249–14257.
[38] P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc., Dalton Trans. 17 (1976) 1686−1698.
[39] Y. Xie, C. Yuan, Characterization and photocatalysis of Eu3+–TiO2 sol in the hydrosol reaction system, Mater. Res. Bull. 39 (2004) 533–543.
[40] S. Ghasemi, S.R. Setayesh, A. Habibi-yangjeh, M.R. Hormozi-nezhad, M.R. Gholami, Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants, J. Hazard. Mater. 199-200 (2012) 170–178.
[41] T. Liu, X. Li, F. Li, Enhanced photocatalytic activity of Ce3+–TiO2 hydrosols in aqueous and gaseous phases, Chem. Eng. J. 157 (2010) 475–482.

References of Chapter VI

[1] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res. 52 (2013) 3581–3599.
[2] W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors, J. Phys. Chem. Lett. 3 (2012) 629–639.
[3] S.D. Richardson, A.D. Thruston, T.W. Collette, J.C. Ireland, Identification of TiO2/UV disinfection byproducts in drinking water, Environ. Sci. Technol. 30 (1996) 3327–3334.
[4] J.P. Garner, P.S.J. Heppell, Cerium nitrate in the management of burns, burns. 31 (2005) 539–547.
[5] P. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microb. 65 (1999) 4094–4098.
[6] S. Mittal, A.K. Pandey, Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis, Biomed Res. Int. 2014 (2014) 1–14.
[7] Y.H. Leung, M.M.N. Yung, A.M.C. Ng, A.P.Y. Ma, S.W.Y. Wong, C.M.N. Chan, Y.H. Ng, A.B. Djurišic´, M. Guo, M.T. Wong, F.C.C. Leung, Y.K. Chan, K.M.Y. Leung, H.K. Lee, Toxicity of CeO2 nanoparticles–The effect of nanoparticle properties, J. Photochem. Photobiol. B Biol. 145 (2015) 48–59.
[8] B.M. Reddy, A. Khan, Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by raman and XPS techniques, J. Phys. Chem. B. 107 (2003) 5162–5167.
[9] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2–based materials, Chem. Rev. 116 (2016) 5987–6041.
[10] B. Yu, K.M. Leung, Q. Guo, W.M. Lau, J. Yang, Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application, Nanotechnology. 22 (2011) 115603–115611.
[11] E. Albert, P.A. Albouy, A. Ayral, P. Basa, N. Nagy, S. Roualdès, V. Rouessac, G. Sáfán, Á. Suhajda, Z. Zolnai, Z. Hórvölgyi, Antibacterial properties of Ag–TiO2 composite sol–gel coatings, RSC Adv. 5 (2015) 59070–59081.
[12] J. Gamage McEvoy, Z. Zhang, Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions, J. Photochem. Photobiol. C Photochem. Rev. 19 (2014) 62–75.
[13] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology. 16 (2005) 2346–2353.
[14] C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. 12 (2007) 527–534.
[15] J. Li, Y. Qiao, H. Zhu, F. Meng, X. Liu, Existence, release, and antibacterial actions of silver nanoparticles on Ag-PIII TiO2 films with different nanotopographies, Int. J. Nanomedicine. 9 (2014) 3389–3402.
[16] B. Zhao, Y.-W. Chen, Ag/TiO2 sol prepared by a solgel method and its photocatalytic activity, J. Phys. Chem. Solids. 72 (2011) 1312–1318.
[17] B. Moongraksathum, Y.-W. Chen, CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants, J. Sol-Gel Sci. Technol. 82 (2017) 772–782.
[18] N. Sasirekha, B. Rajesh, Y.-W. Chen, Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent, Thin Solid Films. 518 (2009) 43–48.
[19] B. Moongraksathum, Y.-W. Chen, Preparation and characterization of SiO2–TiO2 neutral sol by peroxo sol–gel method and its application on photocatalytic degradation, J. Sol-Gel Sci. Technol. 77 (2015) 288–297.

[20] L. Wei, H. Wang, Z. Wang, M. Yu, S. Chen, Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions, RSC Adv. 5 (2015) 74347–74352.
[21] Y.Z. Wang, X.X. Xue, H. Yang, Preparation and characterization of zinc and cerium co-doped titania nano-materials with antibacterial activity, J. Inorg. Mater. 28 (2013) 117–122.
[22] S. Naraginti, T.V.L. Thejaswini, D. Prabhakaran, A. Sivakumar, V.S.V. Satyanarayana, A.S.A. Prasad, Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light, Spectrochim. Acta A Mol. Biomol. Spectrosc. 149 (2015) 571–579.
[23] T. López, F. Rojas, R. Alexander-Katz, F. Galindo, A. Balankin, A. Buljan, Porosity, structural and fractal study of sol-gel TiO2-CeO2 mixed oxides, J. Solid State Chem. 177 (2004) 1873–1885.
[24] H. Eskandarloo, A. Badiei, M. a. Behnajady, TiO2/CeO2 Hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables, Ind. Eng. Chem. Res. 53 (2014) 7847–7855.
[25] H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, Y. Su, Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light, J. Photochem. Photobiol. A Chem. 223 (2011) 157–164.
[26] Z. Liu, B. Guo, L. Hong, H. Jiang, Preparation and characterization of cerium oxide doped TiO2 nanoparticles, J. Phys. Chem. Solids. 66 (2005) 161–167.
[27] J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides, Appl. Surf. Sci. 253 (2007) 8952–8961.
[28] E. Albiter, M.A. Valenzuela, S. Alfaro, G. Valverde-aguilar, Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties, J. Saudi Chem. Soc. 19 (2015) 563–573.
[29] B.P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc., Dalton Trans. 17 (1975) 1686−1698.
[30] M. Romeo, K. Bak, J. Elfallah, F. Lenormand, L. Hilaire, Xps study of the reduction of cerium dioxide, Surf. Interface Anal. 20 (1993) 508–512.
[31] S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications, RSC Adv. 4 (2014) 16782–16791.
[32] G. Ippolito, S. Leone, F.N. Lauria, E. Nicastri, R.P. Wenzel, Methicillin-resistant Staphylococcus aureus: the superbug, Int. J. Infect. Dis. 14 (2010) 7–11.
[33] M. Falcone, P. Serra, M. Venditti, Serious infections due to methicillin-resistant Staphylococcus aureus : An evolving challenge for physicians, Eur. J. Intern. Med. 20 (2009) 343–347.
[34] R.P. Rastogi, Richa, A. Kumar, M.B. Tyagi, R.P. Sinha, Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair, J. Nucleic Acid. 2010 (2010) 1–32.
[35] K. Page, R.G. Palgrave, I.P. Parkin, M. Wilson, S.L.P. Savin, A.V. Chadwick, Titania and silver–titania composite films on glass—potent antimicrobial coatings, J. Mater. Chem. 17 (2007) 95–104.
[36] P.P. V, T. Jaiakumar, M. Umadevi, J. Mayandi, G.V. Sathe, Synergistic effect of
MgO/Ag co-doping on TiO2 for efficient antibacterial agents, Mater. Lett. 184 (2016) 82–87.
[37] Y. Wang, H. Yang, X. Xue, Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium, Vaccum. 107 (2014) 28–32.
[38] C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, S. Zhang, Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium, J. Hazard. Mater. 178 (2010) 517–521.
[39] Z. Xiu, Q. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez, Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett. 12 (2012) 4271–4275.
[40] L. Juan, Z. Zhimin, M. Anchun, L. Lei, Z. Jingchao, Deposition of silver nanoparticles on titanium surface for antibacterial effect, Int. J. Nanomedicine. 5 (2010) 261–267.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2017-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明