博碩士論文 103384602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:52.14.33.175
姓名 陳霸綸(Tran Ba Luan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
(The Importance of External Surface Area and Electrostatic Interaction Mechanism to Dye Adsorption on MOFs)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由化學計量金屬配位體前趨溶液經超聲輔助水熱反應製備了兩種ZIF-8晶體,與未添加表面活性劑的ZIF-8相比,表面活性劑的添加促進形成具有大外表面積的奈米晶體,然後使用這兩個樣品檢查粒度對染料吸附的影響,發現羅丹明B(RB)和甲基橙(MO)的吸附容量與ZIF-8顆粒的外表面積成正比,而亞甲藍(MB)的吸附容量則不隨外表面積減小而消失。我們的計算表明,每個RB和MO分子分別佔據外表面積的4.7和7.9 nm2,相反地,在每單位晶胞有0.11個分子以及每分子具有2.3nm2的外表面積情況下,MB吸附發生在ZIF-8結構內部。
在本論文的第二部分,研究了靜電吸引機制在染料吸附中對UiO-66及其改質樣品的影響,在正常的攪拌和加熱條件下製備Co / UiO-66和H+ / UiO-66樣品以增加表面上的正電荷,並用XRD、SEM和FTIR指出在UiO-66上存在質子H+,而拉曼光譜、EPR和ICP-MS證實鈷成功摻雜約0.6 wt%到UiO-66結構中。甲基橙(MO)吸附的結果表明,與原本的UiO-66相比,改質後的Co-UiO-66和H+ / UiO-66的表面增強了吸附能力,此外,對於在MO與MB的混合染料溶液下詳細地進行了實驗,發現去除陰離子染料相比去除陽離子染料具有更高的選擇率,指出靜電吸引機制的重要性。
一般而言,靜電吸引機制和外表面積在MOF上的染料吸附中起重要作用,由於MOF的特殊結構,突出了與該領域中傳統吸附劑的差異,如同上面所敘述,ZIF-8是一種可變動的骨架,造成它對於染料進入結構時具有選擇性,此外,靜電引力對UiO-66和ZIF-8上的染料吸附也是主要作用之一。
摘要(英) Two kinds of ZIF-8 crystals have been prepared from the ultrasound-assisted hydrothermal reaction of a stoichiometric metal-ligand precursor solution. The addition of surfactant promoted the formation of nanocrystals having a much larger external surface area compared to the non-promoted one. The two samples were then employed to examine the effects of particle size on dye adsorption. The adsorption capacity of Rhodamine B (RB) and methyl orange (MO) was found to be directly proportional to the external surface area of the ZIF-8 particles, while that of methylene blue (MB) did not vanish with decreasing external area. Our calculations suggested that each RB and MO molecule occupied 4.7 and 7.9 nm2 of the external surface, respectively. In contrast, MB adsorption occurs both inside the ZIF-8 structure, at a loading of 0.11 molecules per unit cell, and on the external surface with 2.3 nm2/molecule.
In the second part of this thesis, the effect of electrostatic attraction mechanism in dye adsorption on UiO-66 and their modified samples was studied. Two samples of Co/UiO-66 and H+/UiO-66 were prepared under normal stirring and heating conditions to increase the positive charge on the surface. Characterization with XRD, SEM, and FTIR indicated the existence of proton H+ on UiO-66, while Raman spectroscopy, EPR, and ICP-MS confirmed the successful doping of cobalt into the UiO-66 structure at about 0.6 wt%. Results from methyl orange (MO) adsorption indicate surface enhanced adsorption capacity for both Co-UiO-66 and H+/UiO-66 compared to parent UiO-66. Moreover, highly selective removal of anionic dye compared to cationic dye were performed in detail for mixed dye solutions of MO with MB, indicating the important role of electrostatic attraction mechanism.
In general, the electrostatic attraction mechanism and external surface area play important roles in dye adsorption on MOFs, highlighting differences compared to traditional adsorbents in this field due to the special structure of MOFs. ZIF-8 is a flexible framework which showed selectivity for dye entering the structure as commented above. Also, the electrostatic attraction plays as a major contribution to dye adsorption on both UiO-66 and ZIF-8.
關鍵字(中) ★ ZIF-8
★ UiO-66
★ 染料吸附
★ 外表面積
★ 靜電吸引力
關鍵字(英) ★ ZIF-8
★ UiO-66
★ Dye adsorption
★ External surface area
★ Electrostatic attraction
論文目次 List of abbreviation iv
List of figures v
List of tables xii
摘要 xiii
Abstract xv
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Metal organic framework 5
2.2 MOF synthesis 13
2.3 Introduction of ZIF-8 and UiO-66 21
2.3.1 Structure and preparation of ZIF-8 21
2.3.2 Structure and preparation of UiO-66 25
2.4 MOF applications 28
2.5 Review of dye adsorption on some porous absorbents 41
2.6 Application of MOFs in dye adsorption 43
2.7 Some mechanism of dye adsorption by MOFs 47
2.7.1Electrostatic interactions 48
2.7.2 Effect of pore size and external surface area 52
2.8 Review of dye adsorption on ZIF-8 and challenges 55
2.9 Review of dye adsorption on UiO-66 and challenges 59
2.10 Motivation and aim of this study 64
Chapter 3 Synthesis of ZIF-8 and effect of their external surface area to dye adsorption …………………………………………….66
3.1 Synthesis of ZIF-8 66
3.1.1Typical synthesis of ZIF-8 66
3.1.2 Synthesis of ZIF-8 in the presence of surfactant 66
3.2 Dye adsorption study 67
3.3 ZIF-8 characterizations 68
3.3.1 Effect of ammonium concentration and reaction time 68
3.3.2 ZIF-8 crystals synthesized from the diluted precursor with P-123 73
3.3.3 Porosity and surface properties 76
3.3.4 The calculated external surface area by the t-plot method 78
3.4 Dye adsorption on ZIF-8 80
3.5 The behavior of dye adsorption on ZIF-8 82
3.5.1 Possible factor effects to adsorption 85
3.5.2 Extend using the method for dye adsorption on ZIF-8 86
3.6 Conclusion 86
Chapter 4 Synthesis of UiO-66 and their application for dye adsorption 88
4.1 UiO-66 preparation 88
4.1.1 Materials 88
4.2 Dye adsorption study 89
4.3 Instruments analysis 90
4.4 UiO-66 characterizations 91
4.4.1 XRD patterns 91
4.4.2 SEM and ICP-MS results 92
4.4.3 Confirmation of the occurrence of Co ions 95
4.5 UiO-66 dye adsorption performance 98
4.5.1 Effect of electrostatic attraction to dye removal 98
4.5.2 The anionic selectivity adsorption 101
4.5.3 Effect of absorption by time and initial MO concentration 102
4.5.4 Kinetic adsorption 103
4.5.5 Adsorption isotherms 105
4.5.6 The reusability study 108
4.6 Conclusion 109
Chapter 5 Future Works 110
References 111
參考文獻 [1] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283 (2015) 329–339.
[2] A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpää, Emerging adsorptive removal of azo dye by metal–organic frameworks, Chemosphere, 160 (2016) 30–44.
[3] B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, J. Mater. Chem. A, 2 (2014) 16811–16831.
[4] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks., Proc. Natl. Acad. Sci. U. S. A., 103 (2006) 10186–91.
[5] A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal-organic frameworks, J. Am. Chem. Soc., 128 (2006) 3494–3495.
[6] J.L.C. Rowsell, J. Eckert, O.M. Yaghi, Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering, J. Am. Chem. Soc., 127 (2005) 14904–14910.
[7] T. Zhang, W. Lin, Metal–organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43 (2014) 5982–5993.
[8] C.A. Kent, B.P. Mehl, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Energy Transfer Dynamics in Metal−Organic Frameworks, J. Am. Chem. Soc., 132 (2010) 12767–12769.
[9] A.M. Shultz, O.K. Farha, J.T. Hupp, S.T. Nguyen, A Catalytically Active, Permanently Microporous MOF with Metalloporphyrin Struts, J. Am. Chem. Soc., 131 (2009) 4204–4205.
[10] S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa, Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis, J. Am. Chem. Soc., 129 (2007) 2607–2614.
[11] P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, MOFs as proton conductors-challenges and opportunities, Chem. Soc. Rev., (2014).
[12] J. Della Rocca, D. Liu, W. Lin, Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery, Acc. Chem. Res., 44 (2011) 957–968.
[13] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc., 130 (2008) 13850–13851.
[14] Y.R. Lee, M.S. Jang, H.Y. Cho, H.J. Kwon, S. Kim, W.S. Ahn, ZIF-8: A comparison of synthesis methods, Chem. Eng. J., 271 (2015) 276–280.
[15] J. Cravillon, S. Münzer, S.J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater., 21 (2009) 1410–1412.
[16] K. Kida, M. Okita, K. Fujita, S. Tanaka, Y. Miyake, Formation of high crystalline ZIF-8 in an aqueous solution, CrystEngComm, 15 (2013) 1794.
[17] C. Ying-Bo, Z. Lin-Fei, W. Biao, H. Xiao-Yu, L. Dong-Qing, Z. Feng-Xiao, Z. Yu-Feng, Structural evolution of zeolitic imidazolate framework-8(ZIF-8), J. Tianjin Polytech. Univ., (2016).
[18] X. Fan, W. Wang, W. Li, J. Zhou, B. Wang, J. Zheng, X. Li, Highly Porous ZIF-8 Nanocrystals Prepared by a Surfactant Mediated Method in Aqueous Solution with Enhanced Adsorption Kinetics, ACS Appl. Mater. Interfaces, 6 (2014) 14994–14999.
[19] J. Yao, M. He, K. Wang, R. Chen, Z. Zhong, H. Wang, High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature, CrystEngComm, 15 (2013) 3601–3606.
[20] V.M. Aceituno Melgar, J. Kim, M.R. Othman, Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance, J. Ind. Eng. Chem., 28 (2015) 1–15.
[21] Y. Zhu, K.M. Gupta, Q. Liu, J. Jiang, J. Caro, A. Huang, Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes, Desalination, 385 (2016) 75–82.
[22] Y. Luan, N. Zheng, Y. Qi, J. Yu, G. Wang, Development of a SO3H-functionalized UIO-66 metal-organic framework by postsynthetic modification and studies of its catalytic activities, Eur. J. Inorg. Chem., 2014 (2014) 4268–4272.
[23] Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Selective adsorption of cationic dyes by UiO-66-NH2, Appl. Surf. Sci., 327 (2015) 77–85.
[24] M. Pourkhosravani, S. Dehghanpour, F. Farzaneh, Palladium Nanoparticles Supported on Zirconium Metal Organic Framework as an Efficient Heterogeneous Catalyst for the Suzuki?Miyaura Coupling Reaction, Catal. Letters, 146 (2016) 499–508.
[25] J. Qiu, Y. Feng, X. Zhang, M. Jia, J. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms, J. Colloid Interface Sci., 499 (2017) 151–158.
[26] Y. Han, M. Liu, K. Li, Q. Sun, W. Zhang, C. Song, G. Zhang, Z. Conrad Zhang, X. Guo, In situ synthesis of titanium doped hybrid metal-organic framework UiO-66 with enhanced adsorption capacity for organic dyes, Inorg. Chem. Front., 4 (2017) 1870–1880.
[27] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review, J. Environ. Manage., 85 (2007) 833–846.
[28] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review, J. Environ. Manage., (2007).
[29] G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon, J. Environ. Manage., (2012).
[30] S. Karcher, A. Kornmüller, M. Jekel, Screening of commercial sorbents for the removal of reactive dyes, Dye. Pigment., (2001).
[31] A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes using different types of clay: a review, Appl. Water Sci., (2017).
[32] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283 (2015) 329–339.
[33] M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurin, C. Zhong, Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids, J. Mater. Chem. A, 1 (2013) 8534–8537.
[34] T. Shen, J. Luo, S. Zhang, X. Luo, Hierarchically mesostructured MIL-101 metal-organic frameworks with different mineralizing agents for adsorptive removal of methyl orange and methylene blue from aqueous solution, J. Environ. Chem. Eng., 3 (2015) 1372–1383.
[35] S. Kumar, G. Verma, W.-Y. Gao, Z. Niu, L. Wojtas, S. Ma, Anionic Metal-Organic Framework for Selective Dye Removal and CO 2 Fixation, Eur. J. Inorg. Chem., 2016 (2016) 4373–4377.
[36] J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling, Ultrason. Sonochem., 39 (2017) 550–564.
[37] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks, Acc. Chem. Res., 34 (2001) 319–330.
[38] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402 (1999) 276. https://doi.org/10.1038/46248.
[39] Y.R. Lee, J. Kim, W.S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean J. Chem. Eng., (2013).
[40] Y. Liu, J.H. Her, A. Dailly, A.J. Ramirez-Cuesta, D.A. Neumann, C.M. Brown, Reversible structural transition in MIL-53 with large temperature hysteresis, J. Am. Chem. Soc., (2008).
[41] I. Beurroies, M. Boulhout, P.L. Llewellyn, B. Kuchta, G. Férey, C. Serre, R. Denoyel, Using pressure to provoke the structural transition of metal-organic frameworks, Angew. Chemie - Int. Ed., (2010).
[42] C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)•{O2C-C6H4- CO2}•{HO2C-C6H4 -CO2H}x•H2Oy, J. Am. Chem. Soc., (2002).
[43] P.L. Llewellyn, P. Horcajada, G. Maurin, T. Devic, N. Rosenbach, S. Bourrelly, C. Serre, D. Vincent, S. Loera-Serna, Y. Filinchuk, G. Férey, Complex Adsorption of Short Linear Alkanes in the Flexible Metal-Organic-Framework MIL-53(Fe), J. Am. Chem. Soc., 131 (2009) 13002–13008.
[44] E. Haque, J.E. Lee, I.T. Jang, Y.K. Hwang, J.S. Chang, J. Jegal, S.H. Jhung, Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates, J. Hazard. Mater., 181 (2010) 535–542.
[45] O.M. Yaghi, Metal-organic frameworks (MOFs): New materials designed for H2 storage, in: ACS Div. Fuel Chem. Prepr., 2004: p. 900.
[46] M. Eddaoudi, H. Li, O.M. Yaghi, Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties, J. Am. Chem. Soc., 122 (2000) 1391–1397.
[47] A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178 (2005) 2491–2510.
[48] J. Jiang, F. Wei, G. Yu, Y. Sui, Co3O4electrode prepared by using metal-organic framework as a host for supercapacitors, J. Nanomater., (2015).
[49] R.A. Smaldone, R.S. Forgan, H. Furukawa, J.J. Gassensmith, A.M.Z. Slawin, O.M. Yaghi, J.F. Stoddart, Metalorganic frameworks from edible natural products, Angew. Chemie - Int. Ed., 49 (2010) 8630–8634.
[50] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., (2012).
[51] R.S. Forgan, Metal-Organic Frameworks: Edible Frameworks, in: Encycl. Inorg. Bioinorg. Chem., 2014: pp. 1–13.
[52] S. Keskin, S. Kizilel, Biomedical Applications of Metal Organic Frameworks, Ind. Eng. Chem. Res., (2011).
[53] R.C. Huxford, J. Della Rocca, W. Lin, Metal–organic frameworks as potential drug carriers, Curr. Opin. Chem. Biol., 14 (2010) 262–268.
[54] J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates, Coord. Chem. Rev., (2016).
[55] N.A. Khan, S.H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction, Coord. Chem. Rev., 285 (2015) 11–23.
[56] D. Yamamoto, T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer, Chem. Eng. J., 227 (2013) 145–150.
[57] S. Bhattacharjee, M.S. Jang, H.J. Kwon, W.S. Ahn, Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications, Catal. Surv. from Asia, (2014).
[58] V. Safarifard, A. Morsali, Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers, Coord. Chem. Rev., 292 (2015) 1–14.
[59] N.A. Khan, S.-H. Jhung, Facile Syntheses of Metal-organic Framework Cu 3 (BTC) 2 (H 2 O) 3 under Ultrasound, Bull. Korean Chem. Soc., 30 (2009) 2921–2926.
[60] E. Haque, N. Khan, J.H. Park, S.H. Jhung, Synthesis of a Metal-Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study, Chem. - A Eur. J., 16 (2010) 1046–1052.
[61] B. Seoane, J.M. Zamaro, C. Tellez, J. Coronas, Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20), CrystEngComm, 14 (2012) 3103–3107.
[62] T.-T. Han, H.-L. Bai, Y.-Y. Liu, J.-F. Ma, Synthesis of nanoporous cobalt/carbon materials by a carbonized zeolitic imidazolate framework-9 and adsorption of dyes, New J. Chem., 42 (2018) 717–724.
[63] K. Zhang, R.P. Lively, M.E. Dose, A.J. Brown, C. Zhang, J. Chung, S. Nair, W.J. Koros, R.R. Chance, Alcohol and water adsorption in zeolitic imidazolate frameworks., Chem. Commun. (Camb)., 49 (2013) 3245–7.
[64] V. V. Butova, A.P. Budnik, E.A. Bulanova, A. V. Soldatov, New microwave-assisted synthesis of ZIF-8, Mendeleev Commun., 26 (2016) 43–44.
[65] M. He, J. Yao, Q. Liu, K. Wang, F. Chen, H. Wang, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution, Microporous Mesoporous Mater., 184 (2014) 55–60.
[66] Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun., 47 (2011) 2071.
[67] T. Xing, Y. Lou, Q. Bao, J. Chen, Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation, CrystEngComm, 16 (2014) 8994–9000.
[68] M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Synthesis and Stability of Tagged UiO-66 Zr-MOFs, Chem. Mater., 22 (2010) 6632–6640.
[69] K. Wang, C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu, C. Zhong, Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes, Chem. Eng. J., 289 (2016) 486–493.
[70] K. Leus, P. Concepcion, M. Vandichel, M. Meledina, A. Grirrane, D. Esquivel, S. Turner, D. Poelman, M. Waroquier, V. Van Speybroeck, G. Van Tendeloo, H. García, P. Van Der Voort, Au@UiO-66: a base free oxidation catalyst, RSC Adv., 5 (2015) 22334–22342.
[71] J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, A dye-sensitized Pt@UiO-66(Zr) metal–organic framework for visible-light photocatalytic hydrogen production, Chem. Commun., 50 (2014) 7063.
[72] L. Shen, M. Luo, Y. Liu, R. Liang, F. Jing, L. Wu, Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production, Appl. Catal. B Environ., 166–167 (2015) 445–453.
[73] Z. Sha, J. Sun, H.S.O. Chan, S. Jaenicke, J. Wu, Enhanced Photocatalytic Activity of the AgI/UiO-66(Zr) Composite for Rhodamine B Degradation under Visible-Light Irradiation, Chempluschem, 80 (2015) 1321–1328.
[74] S. Zhao, D. chen, H. Xu, J. mei, Z. Qu, P. Liu, Y. Cui, N. Yan, Combined effects of Ag and UiO-66 for removal of elemental mercury from flue gas, Chemosphere, 197 (2018) 65–72.
[75] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles at MOFs, Coord. Chem. Rev., (2016).
[76] P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hill, M.J. Styles, MOF positioning technology and device fabrication, Chem. Soc. Rev., (2014).
[77] S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, Impact of preparation and handling on the hydrogen storage properties of ZnO(1,4-benzenedicarboxylate) (MOF-5), J. Am. Chem. Soc., 129 (2007) 14176–14177.
[78] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res., 34 (2001) 319–330.
[79] D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci., 105 (2008) 11623–11627.
[80] A.U. Czaja, N. Trukhan, U. Müller, Industrial applications of metal-organic frameworks, Chem. Soc. Rev., (2009).
[81] V.I. Isaeva, L.M. Kustov, The application of metal-organic frameworks in catalysis (Review), Pet. Chem., 50 (2010) 167–180.
[82] L.T.L. NGUYEN, K.K.A. LE, N.T.S. PHAN, A Zeolite Imidazolate Framework ZIF-8 Catalyst for Friedel-Crafts Acylation, Chinese J. Catal., 33 (2012) 688–696.
[83] N.T.S. Phan, K.K.A. Le, T.D. Phan, MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions, Appl. Catal. A Gen., 382 (2010).
[84] L.T.L. Nguyen, K.K.A. Le, H.X. Truong, N.T.S. Phan, Metal-organic frameworks for catalysis: The Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst, Catal. Sci. Technol., 2 (2012) 521–528.
[85] N.T.S. Phan, T.T. Nguyen, C.V. Nguyen, T.T. Nguyen, Ullmann-type coupling reaction using metal-organic framework MOF-199 as an efficient recyclable solid catalyst, Appl. Catal. A Gen., 457 (2013).
[86] F.X. Llabrés i Xamena, A. Abad, A. Corma, H. Garcia, MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF, J. Catal., (2007).
[87] Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 362 (2018) 1–23.
[88] J. Zhang, B. An, Y. Hong, Y. Meng, X. Hu, C. Wang, J. Lin, W. Lin, Y. Wang, Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation, Mater. Chem. Front., 1 (2017) 2405–2409.
[89] J. Liu, D. Zhu, C. Guo, A. Vasileff, S.Z. Qiao, Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions, Adv. Energy Mater., (2017).
[90] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., (2017).
[91] Z. Song, N. Cheng, A. Lushington, X. Sun, Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells, Catalysts, (2016).
[92] Z.-F. Huang, J. Song, K. Li, M. Tahir, Y.-T. Wang, L. Pan, L. Wang, X. Zhang, J.-J. Zou, Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution, J. Am. Chem. Soc., 138 (2016) 1359–1365.
[93] Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu, S.H. Yu, H.L. Jiang, From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis, Adv. Mater., (2015).
[94] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun., (2015).
[95] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev., (2012).
[96] G. Lu, O.K. Farha, L.E. Kreno, P.M. Schoenecker, K.S. Walton, R.P. Van Duyne, J.T. Hupp, Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing, Adv. Mater., (2011).
[97] F.M. Hinterholzinger, A. Ranft, J.M. Feckl, B. Rühle, T. Bein, B. V Lotsch, One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption, J. Mater. Chem., 22 (2012) 10356–10362.
[98] X.Y. Xu, B. Yan, Eu(III) functionalized Zr-based metal-organic framework as excellent fluorescent probe for Cd2+ detection in aqueous environment, Sensors Actuators, B Chem., 222 (2016) 347–353.
[99] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chemie - Int. Ed., (2006).
[100] W. Li, Y. Zhang, Q. Li, G. Zhang, Metal-organic framework composite membranes: Synthesis and separation applications, Chem. Eng. Sci., (2015).
[101] Z.Y. Yeo, S.-P. Chai, P.W. Zhu, A.R. Mohamed, An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances, RSC Adv., 4 (2014) 54322–54334.
[102] J. Caro, M. Noack, Zeolite membranes - Status and prospective, Adv. Nanoporous Mater., (2010).
[103] H.T. Kwon, H.K. Jeong, Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth, Chem. Commun., (2013).
[104] P. Niu, J. Hao, Fabrication of titanium dioxide and tungstophosphate nanocomposite films and their photocatalytic degradation for methyl orange, Langmuir, 27 (2011) 13590–13597.
[105] L. Shi, L. Hu, J. Zheng, M. Zhang, J. Xu, Adsorptive Removal of Methylene Blue from Aqueous Solution using a Ni-Metal Organic Framework Material, J. Dispers. Sci. Technol., 37 (2016) 1226–1231.
[106] J. Zheng, C. Cheng, W.-J. Fang, C. Chen, R.-W. Yan, H.-X. Huai, C.-C. Wang, Surfactant-free synthesis of a Fe3O4@ZIF-8 core–shell heterostructure for adsorption of methylene blue, CrystEngComm, 16 (2014) 3960.
[107] S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: A review, J. Hazard. Mater., (2003).
[108] B. Armaǧan, M. Turan, M.S. Çelik, Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination, (2004).
[109] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci., (2014).
[110] H.N. Tran, S.J. You, H.P. Chao, Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method, J. Environ. Manage., 188 (2017) 322–336.
[111] H.N. Tran, Y.-F. Wang, S.-J. You, H.-P. Chao, Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions, Process Saf. Environ. Prot., 107 (2017) 168–180.
[112] A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Metal organic frameworks as adsorbents for dye adsorption: Overview, prospects and future challenges, Toxicol. Environ. Chem., (2012).
[113] J.-X. Dong, Utilization of Zeolite Imidazolate Framework as an Adsorbent for the Removal of Dye from Aqueous Solution, Asian J. Chem., 25 (2013) 8324–8328.
[114] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals, Chem. - A Eur. J., 17 (2011) 6643–6651.
[115] X. Liu, W. Gong, J. Luo, C. Zou, Y. Yang, S. Yang, Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite, Appl. Surf. Sci., 362 (2016) 517–524.
[116] P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, S. Kaskel, Characterization of metal-organic frameworks by water adsorption, Microporous Mesoporous Mater., 120 (2009) 325–330.
[117] Y.-H. Fan, S.-W. Zhang, S.-B. Qin, X.-S. Li, S.-H. Qi, An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal-organic frameworks and the mechanism investigation, Microporous Mesoporous Mater., 263 (2018) 120–127.
[118] E. Haque, V. Lo, A.I. Minett, A.T. Harris, T.L. Church, Dichotomous adsorption behaviour of dyes on an amino-functionalised metal-organic framework, amino-MIL-101(Al), J. Mater. Chem. A, 2 (2014) 193–203.
[119] E. Haque, J.E. Lee, I.T. Jang, Y.K. Hwang, J.-S. Chang, J. Jegal, S.H. Jhung, Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates, J. Hazard. Mater., 181 (2010) 535–542.
[120] E.R. García, R.L. Medina, M.M. Lozano, I.H. Pérez, M.J. Valero, A.M. Maubert Franco, Adsorption of azo-dye Orange II from aqueous solutions using a metal-organic framework material: Iron- benzenetricarboxylate, Materials (Basel)., 7 (2014) 8037–8057.
[121] X. Zhao, S. Liu, Z. Tang, H. Niu, Y. Cai, W. Meng, F. Wu, J.P. Giesy, Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water, Sci. Rep., 5 (2015) 11849.
[122] E. Haque, J.W. Jun, S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater., 185 (2011) 507–511.
[123] F. Leng, W. Wang, X.J. Zhao, X.L. Hu, Y.F. Li, Adsorption interaction between a metal–organic framework of chromium–benzenedicarboxylates and uranine in aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp., 441 (2014) 164–169.
[124] S.-H. Huo, X.-P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution, J. Mater. Chem., 22 (2012) 7449.
[125] Y. Feng, Y. Li, M. Xu, S. Liu, J. Yao, Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism, RSC Adv., 6 (2016) 109608–109612.
[126] C. Jiang, B. Fu, H. Cai, T. Cai, Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8, Chem. Speciat. Bioavailab., 28 (2016) 199–208.
[127] A.A. Mohammadi, A. Alinejad, B. Kamarehie, S. Javan, A. Ghaderpoury, M. Ahmadpour, M. Ghaderpoori, Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions, Int. J. Environ. Sci. Technol., (2017).
[128] F. Wei, D. Chen, Z. Liang, S. Zhao, Comparison Study on the Adsorption Capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs, Nanomaterials, 8 (2018) 248.
[129] M. Roushani, Z. Saedi, T. Musa beygi, Anionic dyes removal from aqueous solution using TMU-16 and TMU-16-NH2 as isoreticular nanoporous metal organic frameworks, J. Taiwan Inst. Chem. Eng., 66 (2016).
[130] H. Li, X. Cao, C. Zhang, Q. Yu, Z. Zhao, X. Niu, X. Sun, Y. Liu, L. Ma, Z. Li, Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222, RSC Adv., 7 (2017) 16273–16281.
[131] X.X. Huang, L.G. Qiu, W. Zhang, Y.P. Yuan, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Hierarchically mesostructured MIL-101 metal-organic frameworks: Supramolecular template-directed synthesis and accelerated adsorption kinetics for dye removal, CrystEngComm, 14 (2012) 1613–1617.
[132] S. Hu, M. Liu, K. Li, C. Song, G. Zhang, X. Guo, Surfactant-assisted synthesis of hierarchical NH2-MIL-125 for the removal of organic dyes, RSC Adv., 7 (2017) 581–587.
[133] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal–organic frameworks, Chem. Rev., 114 (2014) 10575–10612.
[134] M. Arias, E. López, A. Nuñez, D. Rubinos, B. Soto, M.T. Barral, F. Díaz-Fierros, Adsorption of Methylene Blue by Red Mud, An Oxide- Rich Byproduct of Bauxite Refining BT - Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments, in: J. Berthelin, P.M. Huang, J.-M. Bollag, F. Andreux (Eds.), Springer US, Boston, MA, 1999: pp. 361–365.
[135] Y. Li, K. Zhou, M. He, J. Yao, Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous Mesoporous Mater., 234 (2016) 287–292.
[136] S. Tanaka, K. Kida, T. Nagaoka, T. Ota, Y. Miyake, Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework, Chem. Commun., 49 (2013) 7884–7886.
[137] S. Bordiga, J.G. Vitillo, G. Ricchiardi, L. Regli, D. Cocina, A. Zecchina, B. Arstad, M. Bj??rgen, J. Hafizovic, K.F. Lillerud, Interaction of hydrogen with MOF-5, J. Phys. Chem. B, 109 (2005) 18237–18242.
[138] J.-M. Yang, A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes, J. Colloid Interface Sci., 505 (2017) 178–185.
[139] J.-M. Yang, R.-J. Ying, C.-X. Han, Q.-T. Hu, H.-M. Xu, J.-H. Li, Q. Wang, W. Zhang, Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: effects of Ce(iii) doping, Dalt. Trans., 47 (2018) 3913–3920.
[140] T.-T. Li, Y.-M. Liu, T. Wang, Y.-L. Wu, Y.-L. He, R. Yang, S.-R. Zheng, Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation, Microporous Mesoporous Mater., 272 (2018) 101–108.
[141] T.T. Li, Y.M. Liu, T. Wang, Y.L. Wu, Y.L. He, R. Yang, S.R. Zheng, Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation, Microporous Mesoporous Mater., (2018).
[142] A. Polyzoidis, T. Altenburg, M. Schwarzer, S. Loebbecke, S. Kaskel, Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size, Chem. Eng. J., 283 (2016) 971–977.
[143] J. Yao, M. He, H. Wang, Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks, CrystEngComm, 17 (2015) 4970–4976.
[144] A.S. Munn, P.W. Dunne, S.V.Y. Tang, E.H. Lester, Large-scale continuous hydrothermal production and activation of ZIF-8, Chem. Commun., 51 (2015) 12811–12814.
[145] B. Chen, F. Bai, Y. Zhu, Y. Xia, Hofmeister anion effect on the formation of ZIF-8 with tuneable morphologies and textural properties from stoichiometric precursors in aqueous ammonia solution, RSC Adv., 4 (2014) 47421–47428.
[146] B. Chen, F. Bai, Y. Zhu, Y. Xia, A cost-effective method for the synthesis of zeolitic imidazolate framework-8 materials from stoichiometric precursors via aqueous ammonia modulation at room temperature, Microporous Mesoporous Mater., 193 (2014) 7–14.
[147] K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67, J. Mater. Chem. A, 5 (2017) 952–957.
[148] H.Y. Cho, J. Kim, S.N. Kim, W.S. Ahn, High yield 1-L scale synthesis of ZIF-8 via a sonochemical route, Microporous Mesoporous Mater., 169 (2013) 180–184.
[149] M.F. Lehmann, S.M. Bernasconi, J.A. McKenzie, A method for the extraction of ammonium from freshwaters for nitrogen isotope analysis, Anal. Chem., 73 (2001) 4717–4721.
[150] W. Makowski, K. Mlekodaj, B. Gil, W.J. Roth, B. Marszalek, M. Kubu, P. Hudec, A. Smieskova, M. Hornacek, Application of quasi-equilibrated thermodesorption of linear and di-branched paraffin molecules for detailed porosity characterization of the mono-layered zeolite MCM-56, in comparison with MCM-22 and ZSM-5, Dalt. Trans., 43 (2014) 10574–10583.
[151] S.J. Gregg, K.S.W. Sing, H.W. Salzberg, Adsorption Surface Area and Porosity, 1967.
[152] S. Tanaka, K. Fujita, Y. Miyake, M. Miyamoto, Y. Hasegawa, T. Makino, S. Van der Perre, J. Cousin Saint Remi, T. Van Assche, G. V Baron, J.F.M. Denayer, Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF, J. Phys. Chem. C, 119 (2015) 28430–28439.
[153] C. Zhang, J.A. Gee, D.S. Sholl, R.P. Lively, Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8, J. Phys. Chem. C, 118 (2014) 20727–20733.
[154] W. J Roth, B. Gil, W. Makowski, B. Marszalek, P. Eliášová, Layer Like Porous Materials with Hierarchical Structure, 2015.
[155] Avantor Company, Safety data of Triethylamine, 2017.
[156] H.-N. Wang, F.-H. Liu, X.-L. Wang, K.-Z. Shao, Z.-M. Su, Three neutral metal–organic frameworks with micro- and meso-pores for adsorption and separation of dyes, J. Mater. Chem. A, 1 (2013) 13060.
[157] M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49 (2013) 9449.
[158] J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance, J. Mater. Chem. A, 2 (2014) 19005–19010.
[159] J.A. Botas, G. Calleja, M. Sánchez-Sánchez, M.G. Orcajo, Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties, Langmuir, 26 (2010) 5300–5303.
[160] A.M. Ebrahim, T.J. Bandosz, Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions, ACS Appl. Mater. Interfaces, 5 (2013) 10565–10573.
[161] J.P. Cheng, X. Chen, J.-S. Wu, F. Liu, X.B. Zhang, V.P. Dravid, Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes, CrystEngComm, 14 (2012) 6702.
[162] C. Atzori, G.C. Shearer, L. Maschio, B. Civalleri, F. Bonino, C. Lamberti, S. Svelle, K.P. Lillerud, S. Bordiga, Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study, J. Phys. Chem. C, 121 (2017) 9312–9324.
[163] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, R. Dovesi, Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments, J. Chem. Phys., 139 (2013) 164102.
[164] Z. Nickolov, G. Georgiev, D. Stoilova, I. Ivanov, Raman and IR study of cobalt acetate dihydrate, J. Mol. Struct., 354 (1995) 119–125.
[165] B. Rivas-Murias, V. Salgueiriño, Thermodynamic CoO–Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals, J. Raman Spectrosc., 48 (2017) 837–841.
[166] Y.H. Hu, L. Zhang, Amorphization of metal-organic framework MOF-5 at unusually low applied pressure, Phys. Rev. B, 81 (2010) 174103.
[167] G.D. Ewen Smith, Introduction, Basic Theory and Principles, 2005.
[168] H. Yang, X.-W. He, F. Wang, Y. Kang, J. Zhang, Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye, J. Mater. Chem., 22 (2012) 21849.
[169] C. Wang, H. Wang, R. Luo, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate, Chem. Eng. J., 330 (2017) 262–271.
[170] Z. hang Zhang, J. li Zhang, J. ming Liu, Z. hu Xiong, X. Chen, Selective and Competitive Adsorption of Azo Dyes on the Metal–Organic Framework ZIF-67, Water. Air. Soil Pollut., 227 (2016).
[171] E.R. García, R.L. Medina, M.M. Lozano, I. Hernández Pérez, M.J. Valero, A.M.M. Franco, Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate, Materials (Basel)., 7 (2014) 8037–8057.
指導教授 蔣孝澈 張博凱(Anthony S.T. Chiang Bor Kae Chang) 審核日期 2019-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明