博碩士論文 103386002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.15.156.140
姓名 粘愷峻(Kai-Chun Nien)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 活性碳與沸石吸附之工程實踐評估
(Evaluation of Activated Carbon and Zeolite Adsorption for Field Application)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 吸附(濾材)技術已廣泛應用於揮發性有機物(VOCs)之去除,乃一種有
效的控制技術,固定床活性碳回收設備及沸石濃縮轉輪焚化系統技術為業
界經常採用之技術,但實廠上仍面臨一些應用限制。有鑑於此,本研究致
力於改善活性碳及沸石吸附系統之效能,以期提供相關改善建議方法及健
全空氣污染防制技術,為提升空氣品質做出貢獻。於活性碳吸、脫附過程
抑制丁二酮(butanedione, BDO)生成的研究方面,本研究測試5種商用活性
碳、9種改質劑、3種溶劑、多種浸置時間與溫度的處理流程,超過28組以
上的活性碳改質方法。實驗結果顯示使用適當的改質劑、較高的改質劑負
荷、以氮氣作為脫附氣體可有效降低MEK反應生成BDO。證實以改質之活
性碳進行溶劑回收與揮發性有機物控制,初期投資成本雖較高且操作費用
較貴,但可大幅提升系統操作之安全性。此外,在提升沸石濃縮轉輪吸附
大分子均三甲苯性能的研究方面,本研究發現單一種沸石基材吸附劑無法
通用於分子尺寸不同的VOCs,對噴塗製程廢氣的混合性VOCs而言,本研
究整合微孔洞(H-ZSM-5)與中孔洞(MCM-41)兩類沸石串連的工程解決方
案。研究結果指出在含甲苯與均三甲苯兩種VOCs濃度各50 ppm的進流排
氣,單獨使用H-ZSM-5-25沸石的貫穿時間為3.5 min,單獨使用MCM-41-AS
沸石的貫穿時間為6.5 min,串聯兩類型沸石的貫穿時間明顯延長至20.5
min,是單一沸石的3.2倍或5.9倍,實驗結果證實,串聯兩類型沸石組合可
適用於同時含有小分子與大分子的噴塗製程VOCs之有效控制。
摘要(英) Adsorption technologies have been widely used to control the emissions
of volatile organic compounds (VOCs), and it is regarded as an effective way
for VOCs removal. Especially, activated carbon and zeolite are commercially
available for field application. However, they still have some limitations.
Therefore, this study is motivated to improve the performance of adsorption
systems of activated carbon and zeolite. First, methods for inhibiting
butanedione (BDO) formation during activated carbon adsorption-desorption of
methyl ethyl ketone (MEK) were investigated. In total, more than 28 types of
modified activated carbons were extensively examined. The tests included five
types of commercial activated carbons, nine kinds of modifiers, three kinds of
solvents, and a variety of processing time and temperatures. Experimental
results indicated that BDO formation from MEK oxidation could be greatly
inhibited by suitable modifier, high modifier loading, and adopting N2 as
desorption medium. For instance, BDO concentration in the test with raw
activated carbon as adsorbent was 0.123%, and decreased to 0.0115% as
modified activated carbon was applied, indicating that BDO concentration
could be reduced by more than 10 times. Although the capital and running costs
would increase by using modified activated carbon for solvent recovery, the
operational safety can be greatly improved and it is economically feasible. On
the other hand, zeolite adsorption rotor was studied for the enhancement of
mesitylene adsorption. It is found that a rotor with single type of zeolite could
not achieve good removal efficiency due to various VOCs molecular sizes in
the exhausts of spray coating processes. This study hence proposed a possible
engineering solution with the integration of both micropore (H-ZSM-5) and
iii
mesopore (MCM-41) zeolites. Experimental results indicated that the
breakthrough time with H-ZSM-5-25/MCM-41-AS as adsorbent was greatly
extended to 20.5 min. On the other hand, the breakthrough times were 3.5 and
6.5 min, respectively, when H-ZSM-5 and MCM-41-AS were applied as
adsorbent, respectively, for the gas stream containing 50 ppm toluene and
mesitylene. Obviously, the breakthrough time of the combined zeolite
developed can increase by 3.2 - 5.9 times if compared with individual zeolite. It
is proved that combined H-ZSM-5-25/MCM-41-AS zeolite as adsorbent is
suitable for simultaneous and effective removal of VOCs from spray coating
exhaust.
關鍵字(中) ★ 活性碳吸附
★ 沸石濃縮轉輪
★ 溶劑回收
★ 丁二酮
★ 均三甲苯
★ 揮發性有機物
關鍵字(英) ★ Activated carbon adsorption/desorption
★ zeolite adsorption rotor
★ solvent recovery
★ butanedione (BDO)
★ mesitylene
★ volatile organic compounds (VOCs)
論文目次 目錄
摘要 ........................................................................................................................... i
Abstract ..................................................................................................................... ii
表目錄 ...................................................................................................................... V
第一章 前言............................................................................................................. 1
1.1 研究緣起 .............................................................................................. 1
1.2 研究目的 .............................................................................................. 3
第二章 文獻回顧 ..................................................................................................... 4
2.1 丁酮、均三甲苯及甲苯之物化特性、來源及危害 ............................. 7
2.2 揮發性有機物之控制技術 .................................................................. 11
2.3 國內重要之產業現況分析及VOCs 之排放 .......................................15
2.4 吸附與脫附理論 ..................................................................................38
2.5 影響吸附之因子 ..................................................................................41
2.6 活性碳於吸附VOCs 之應用...............................................................44
2.7 沸石於VOCs 吸附之應用 ..................................................................52
2.8 等溫吸附方程式 ..................................................................................59
2.9 吸附貫穿曲線 ......................................................................................64
第三章 研究方法 ....................................................................................................66
3.1 商用活性碳選用 ..................................................................................67
3.2 活性碳之改質方法 ..............................................................................68
3.3 活性碳吸脫附性能測試系統...............................................................70
3.4 活性碳吸脫附測試流程 ......................................................................71
3.5 活性碳吸附容量之計算 ......................................................................72
3.6 BDO 吸收液分析及檢量線 .................................................................73
3.7 活性碳表面官能基分析方法...............................................................73
II
3.8 沸石吸附實驗方法 ..............................................................................74
第四章 改質活性碳之吸附效能探討 .....................................................................77
4.1 活性碳孔徑特性與灰分含量之差異 ...................................................77
4.2 活性碳表面含氧官能基之差異及改質後活性碳之起燃點 ................79
4.3 未改質活性碳再生時之BDO 生成量 .................................................81
4.4 脫附溫度及表面含氧官能基對BDO 產生量之影響..........................83
4.5 改質劑負荷對BDO 產生量之影響 ....................................................84
4.6 活性碳含氧官能基差異對BDO 產生量之影響 .................................87
4.7 MEK/甲苯交替吸脫附對BDO 之影響 ...............................................89
4.8 脫附介質對BDO 之影響 ....................................................................90
4.9 活性碳改質成本分析與經濟效益評估 ...............................................93
第五章 沸石對均三甲苯之吸附效能探討 .............................................................95
5.1 沸石孔徑特性分析及其均三甲苯之吸附效能 ....................................95
5.2 沸石矽鋁比之影響與吸附均三甲苯等溫吸附方程式 ........................98
5.3 相對濕度對MCM-41 吸附均三甲苯之影響 .................................... 100
5.4 MCM-41-AS 沸石吸附均三甲苯之循環測試 ................................... 102
5.5 沸石孔洞大小對不同氣體分子尺寸之影響 ..................................... 104
第六章 結論與建議 .............................................................................................. 108
6.1 結論 ................................................................................................... 108
6.2 建議 ................................................................................................... 109
參考文獻 ............................................................................................................... 110
圖目錄
圖2.1 VOCs 逸散及反應途徑示意圖 ................................................................... 5
圖2.2 國內不同製程之總VOCs 排放佔比情形 ................................................... 6
圖2.4 PU 合成皮乾式製程: 轉塗法 ................................................................... 18
圖2.5 PU 合成皮乾式製程: 直接塗佈法 ........................................................... 19
圖2.6 PU 合成皮乾式製程操作流程 .................................................................. 19
圖2.7 PU 合成皮濕式製程:塗佈法 .................................................................. 20
圖2.8 PU 合成皮濕式製程: 含浸法 ................................................................... 20
圖2.9 PU 合成皮濕式製程操作流程 .................................................................. 21
圖2.10 某乾式PU 皮業製程之THC 排放檢測結果 ............................................ 21
圖2.11 國內某乾式PU 皮業製程之VOCs 排放種類及濃度 ............................... 22
圖2.12 三槽式固定床活性碳溶劑回收設備圖 ..................................................... 23
圖2.13 流體化床溶劑回收設備圖 ........................................................................ 24
圖2.14 三槽式固定床活性碳溶劑回收系統流程 ................................................. 24
圖2.15 正常活性炭顆粒與火災燃燒後之活性碳 ................................................. 27
圖2.16 金屬表面塗裝流程.................................................................................... 30
圖2.17 木材塗裝作業流程.................................................................................... 32
圖2.18 塑膠塗裝作業流程圖 ................................................................................ 33
圖2.19 蜂巢狀沸石吸附轉輪及卡匣 .................................................................... 37
圖2.20 沸石濃縮轉輪焚化系統流程示意圖 ......................................................... 37
圖2.21 吸附原理示意 ........................................................................................... 39
圖2.22 典型之活性碳吸脫附回收系統 ................................................................ 46
圖2.23 ZSM-5 沸石結構示意圖 ........................................................................... 55
圖2.24 六種型態之等溫吸附曲線示意圖 ............................................................ 61
圖2.25 吸附質傳帶示意圖.................................................................................... 65
IV
圖3.1 研究架構與流程 ......................................................................................... 67
圖3.2 活性碳改質性能實驗設置 .......................................................................... 71
圖3.3 活性碳表面官能基形式 .............................................................................. 74
圖3.4 均三甲苯之沸石吸脫附實驗設置 .............................................................. 76
圖4.1 不同活性碳之灰份組成比較 ...................................................................... 78
圖4.2 活性碳表面各種官能基之佔比與毫莫耳數 ............................................... 80
圖4.3 未改質活性碳再生時之BDO 生成量 ........................................................ 82
圖4.4 脫附溫度對BDO 產生量之影響 ................................................................ 84
圖4.5 改質劑負荷對BDO 產生量之影響 ............................................................ 85
圖4.6 原碳及改質活性碳之含氧官能基 .............................................................. 86
圖4.7 改質活性碳之BDO 生成量 ........................................................................ 87
圖4.8 MEK/甲苯交替吸脫附實驗結果 ................................................................ 88
圖4.9 以氮氣為脫附介質時對BDO 生成之影響................................................. 90
圖4.10 混合VOCs 條件下之吸脫附循環實驗結果 ............................................... 91
圖5.1 四種沸石之均三甲苯等溫吸附曲線........................................................... 97
圖5.2 五組均三甲苯濃度之MCM-41-AS 等溫吸附曲線 .................................... 99
圖5.3 MCM-41-AS 吸附均三甲苯之Freundlich 等溫方程式 ............................ 100
圖5.4 相對濕度對MCM-41-AS 沸石吸附均三甲苯之影響 .............................. 101
圖5.4 MCM-41-AS 沸石吸附均三甲苯之連續吸脫附測試結果 ....................... 103
圖5.5 HZSM-5 及MCM-41-AS 吸附甲苯及均三甲苯之吸附曲線 ................... 106
表目錄
表 2.1 全球每年人為排放及自然排放之VOCs 排放量 ........................................ 7
表 2.2 揮發性有機氣體處理技術之優缺點 .......................................................... 14
表 2.3 國內現有之VOCs 管制法規與相關行業 .................................................. 17
表 2.4 汽車製造業及PU 合成皮業法規管制內容 ............................................... 17
表 2.5 某乾式PU 皮業之製程排放THC 檢測結果 ............................................. 22
表 2.6 國內某乾式PU 皮業製程之VOCs 排放種類及濃度分析 ........................ 23
表 2.7 VOCs 控制技術之能源耗用及成本評估 ................................................... 25
表 2.8 VOCs 評估控制技術之成本效益比較 ....................................................... 26
表 2.9 各種表面塗裝製程之污染物 ..................................................................... 34
表 2.10 表面塗裝程序排放VOCs 特性 ................................................................. 35
表 2.11 物理吸附與化學吸附 ................................................................................. 40
表 2.12 影響吸附特性之因子 ................................................................................. 44
表 2.13 活性碳之特性 ............................................................................................ 46
表 2.14 一般活性碳結構內孔隙特徵 ..................................................................... 47
表 2.15 活性碳應用於VOCs 吸附之文獻彙整 ...................................................... 48
表 2.16 沸石應用於VOCs 吸附之文獻彙整 .......................................................... 56
表 2.17 常用之吸附劑之特性、規格及用途 .......................................................... 59
表 3.1 活性碳改質列表 ........................................................................................ 69
表 3.2 吸附實驗測試之MEK 與Toluene 性質 .................................................... 70
表 4.1 活性碳之孔洞特性及物性分析結果 .......................................................... 78
表 4.2 活性碳改質前、後之起燃點變化 ............................................................. 80
表 4.3 未改質活性碳再生時之BDO 平均生成量與相關特性 ............................ 82
表 4.4 改質劑負荷對BDO 產生量之影響 ........................................................... 86
表 4.5 活性碳改質成本分析 ................................................................................. 93
VI
表 5.1 沸石孔徑特性分析結果 ............................................................................. 96
表 5.2 四種沸石吸附均三甲苯的貫穿時間、飽和時間與飽和吸附量 ............... 97
表 5.3 相對濕度對MCM-41-AS 沸石吸附均三甲苯之影響 ............................. 101
表 5.4 MCM-41-AS 沸石吸附均三甲苯之連續十次吸脫附測試結果 ............... 103
表 5.5 MCM-41 系列沸石吸附VOCs 之比較 .................................................... 104
表 5.6 HZSM-5 及MCM-41-AS 吸附甲苯及均三甲苯之實驗結果 .................. 106
表 5.7 HZSM-5-25/MCM-41-AS 複合型沸石吸附甲苯及均三甲苯之效果 ...... 107
參考文獻 Ciuparu D., Pfefferle, L., and Haller, G.L., Hydrothermal
synthesis of MCM-41 using different ratios of colloidal and soluble silica,
Microporous and Mesoporous Materials, 81, 191-200 2005.
Armaroli, T., Simon, L.J., Digne, M., Montanari, T., Bevilacqua, M., Valtchev, V.,
Patarin, J., and Busca, G., Effects of crystal size and Si/Al ratio on the surface
properties of H-ZSM-5 zeolites, Applied Catalysis A: General, 306, 78-84
2006.
Blanco, C., Pesquera C., and Gonzalez, F., Synthesis and characterization of
MCM-41 with different Si/Al molar ratios and different silicon sources,
Studies in Surface Science and Catalysis, 154, 432-438 2004.
Blocki, S.W., Hydrophobic zeolite adsorption: A proven advancement in solvent
separation technology, Environmental Progress, 12, 226-237 1993.
Borkar, C., Tomar, D., and Gumma, S., Adsorption of dichloromethane on
activated carbon, Journal of Chemical & Engineering Data, 55 1640-1644
2010.
Breck, D.W., Zeolite Molecular Sieves, John Wiley & Sons (1974).
Brunauer, S., Emmet, P.H. and Teller, E., Adsorption of gas in multimolecular
layers, Journal of the American Chemical Society, 60, 309-319 1938.
Cardoso, B., Mestre, A.S., Carvalho, A.P., and Pires, J., Activated carbon derived
from cork powder waste by KOH activation: Preparation, characterization, and
VOCs adsorption, Industrial & Engineering Chemistry Research, 47,
5841-5846 2008.
Chandak, M.V., and Lin, Y.S., Hydrophobic zeolites as adsorbents for removal of
volatile organic compounds from air, Environmental Technology, 19, 941-948
1998.
Chiang, H.L., Chiang, P.C., Chiang, Y.C., and Chang, E.E., Diffusivity of
microporous carbon for benzene and methyl-ethyl ketone adsorption,
Chemosphere, 38, 2733-2746 1999.
ChristianTaty-Costodes, V., Fauduet, H., Porte, C., and Ho, Y., Removal of lead (II)
ions from synthetic and real effluents using immobilized Pinus sylvestris
sawdust: Adsorption on a fixed-bed column, Journal of Hazardous Materials,
123, 135-144 2005.
Cosseron, A.F., Daou, T.J., Tzanis, L., Nouali, H., Deroche, I., Coasne, B.,
Tchamber, V., Adsorption of volatile organic compounds in pure silica CHA,
?BEA, MFI and STT-type zeolites, Microporous and Mesoporous Materials,
173,147-154 2013.
Delage, F., Pre, P., Le, and Cloirec, P., Mass transfer and warming during
adsorption of high concentrations of VOCs on an activated carbon bed:
Experimental and theoretical analysis, Environmental Science & Technology,
34, 4816-4821 2000.
Dou, B.J., Hu, Q., Li, J.J., Qiao, S.Z., and Hao, Z.P., Adsorption performance of
VOCs in ordered mesoporous silicas with different pore structures and surface
chemistry, Journal of Hazardous Materials, 186, 1615-1624 2011.
de Yuso, A.M., Izquierdo, M.T., Rubio, B., and Carrott, P.J.M., Adsorption of
toluene and toluene-water vapor mixture on almond shell based activated
carbons, Adsorption, 19, 1137-1148 2013.
112
Dyer, A., An introduction to zeolite molecular sieves, Australia: John Wiley &
Sons, 1988.
Farrell, J., Manspeaker, C., and Luo, J., Understanding competitive adsorption of
water and trichloroethylene in a high-silica Y zeolite, Microporous and
Mesoporous Materials, 59, 205-214 2003.
Freundlich, H., Kolloidfallung und Adsorption, Angewandte Chemie, 20 749-750
1907.
Fuertes, A.B., Marban, G., and Nevskaia, D.M., Adsorption of volatile organic
compounds by means of activated carbon fibre-based monoliths, Carbon, 41,
87-96 2003.
Fujita, E.M., Lu, Z., Sheetz, L., Harshield, G., Hayes, T., and Zielinska, B.,
Hydrocarbon source apportionment in western Washington. Prepared for State
of Washington. Dept. of Ecology, Lacy, WA, Desert Research Institute, Reno,
NV (1997).
Fujita, E.M., Watson, J.G., Chow, J.C., Robinson, N.F., Richards, L.W., and
Kumar, N., Northern front range air quality study. Volume C: Source
apportionment and simulation methods and evaluation. Prepared for Colorado
State University, Cooperative Institute for Research in the Atmosphere, Ft.
Collins, CO, Desert Research Institute, Reno, NV (1998).
Gaca, P., Drzewiecka, M., Kaleta, W., Kozubek, H., and Nowi?ska, K., Catalytic
degradation of polyethylene over mesoporous molecular sieve MCM-41
modified with heteropoly compounds, Polish Journal of Environmental
Studies, 17, 25-31 2008.
Garcia-Martinez, J., and Li, K.H., Mesoporous zeolites: preparation,
characterization and applications, Wiley-VCH Verlag GmbH and Co. KGaA,
2015.
Gen, L., and Ikuo, A., Application of activated carbon technology, Japan, 2002.
Gregg, S.J., and Sing, K.S.W., Adsorption Surface Area and Porosity, 2nd ed.,
Academic Press, London, 1982.
Gupta, A., Gaur, V., and Verma, N., Breakthrough analysis for adsorption of
sulfur-dioxide over zeolites, Chemical Engineering and Processing, 43, 9-22
2004.
Gupta, K.N., Rao, N.J., and Agarwa, G.K., Removal of toluene from nitrogen gas
by adsorption in a fixed bed column: Experimental and theoretical
breakthrough curves, International Journal of Chemical Engineering and
Applications, 2, 359-365 2011.
Hong, G.B., Ruan, R.T., and Chang, C.T., MCM-41 from spent glasses for volatile
organic compounds treatment, Chemical Engineering Journal, 215-216,
472-478 2013.
Hu, X.J., Qiao, S.Z., Zhao, X.S., and Lu, G.Q., Adsorption study of benzene in
ink-bottle-like MCM-41, Industrial & Engineering Chemistry Research, 40,
862-867 2001.
Huang, P.H., and Chen, S.H., Effect of moisture content, system pressure, and
temperature on the adsorption of carbon dioxide in carbon nanotube and
graphite composite structures using molecular dynamics simulations, Journal
of Nanoscience and Nanotechnology, 16, 8654-8661 2016.
Huang, H.F., Gu, Y.Y., Yin, C., Zhou, C.H., and Lu, H.F., The
adsorption-desorption performance of volatile organic compounds (VOCs)
114
onto polymer resin and mesoporous molecular sieves, China Environmental
Science, 32, 62-68 2012.
Huang, L., Huang, Q.L., Xiao, H.N., and Ei?, M., Effect of cationic template on
the adsorption of aromatic compounds in MCM-41, Microporous and
Mesoporous Materials, 98, 330-338 2007.
Hung, C.T., Bai, H.L., and Karthik, M., Ordered mesoporous silica particles and
Si-MCM-41 for the adsorption of acetone: a comparative study, Separation
Science and Technology, 64, 265-272 2009.
Huang, Z., Miao, H., Li, J.H., Wei, J.I., Kawi, S., and Lai, M.W.,
Modifier-enhanced supercritical CO2 extraction of organic template from
aluminosilicate MCM-41 materials: Effect of matrix Al/Si ratios and different
modifiers, Separation and Purification Technology, 118, 170-178, 2013.
Huang, Z.H., Kang, F., Liang, K.M., and Hao, J., Breakthrough of
methyethylketone and benzene vapors in activated carbon fiber beds, Journal
of Hazardous Materials, 98, 107-115 2003.
Hussein, M.S., and Ahmed, M.J., Fixed bed and batch adsorption of benzene and
toluene from aromatic hydrocarbons on 5A molecular sieve zeolite, Materials
Chemistry and Physics, 181, 512-517 2016.
Hussey, F., and Gupta, A., Removal of VOCs from industrial process exhaust with
carbon and zeolite adsorbents, Proceeding of Air & Waste Management
Association Meeting, 1996.
Ichiura, H., Nozaki, M., Kitaoka, T., and Tanaka, H., Influence of uniformity of
zeolite sheets prepared using a papermaking technique on VOC adsorptivity ,
Advances in Environmental Research, 7, 975-979 2003.
Ivanova, S., Perez, A., Centeno, M.A., Odriozola, J.A., New and future
developments in catalysis, USA: Netherlands, 2013.
Kalantarifard, A., Gon, J.G., and Yang, G.S., Formaldehyde adsorption into
clinoptilolite zeolite modified with the addition of rich materials and
desorption performance using microwave heating, Terrestrial, Atmospheric
and Oceanic Sciences, 27, 865-875 2016.
Katz, S., and Gray, D.G., The adsorption of hydrocarbons on cellophane: III. effect
of relative humidity, Journal of Colloid and Interface Science, 82, 339-351
1981.
Keller, J.U., and Staudt, R., Gas Adsorption Equilibria, Springer, U.SA, 2005
Khan, F.I., and Ghoshal, A.K., Removal of volatile organic compounds from
polluted air, Journal of Loss Prevention in the Process Industries, 13, 527-545
2000.
Koppmann, R., Volatile organic compounds in the atmosphere, Blackwell
Publishing Ltd , Wiley-Blackwell, 2007.
Koppmann, R., Handbook of hydrocarbon and lipid microbiology, Germany:
Springer, 2010.
Kosslick, H., Lischke, G., Parlitz, B., Storek, W., and Fricke, R., Acidity and active
sites of Al-MCM-41, Applied Catalysis A: General, 184, 49-60 1990.
Li, L.Q., Song, J.F., Yao, X.L., Huang, G.J., Liu, Z., and Tang, L., Adsorption of
volatile organic compounds on three activated carbon samples: Effect of pore
structure, Journal of Central South University, 19, 3530-3539 2012.
Lordgooei, M., Rood, M.J., and Massoud, R.A., Sorption of toxic chemical vapors
in fixed bed adsorbers containing activated carbon fiber cloth and modeling of
diffusivity and mass transfer, Air & Waste Management Association’s 91st
116
Annual Meeting & Exhibition, San Diego, California, 121–142, June 14–18
1998.
Li, L., Liu, S., and Liu, J., Surface modification of coconut shell based activated
carbon for the improvement of hydrophobic VOC removal, Journal of
Hazardous Materials, 192, 683-690 2011.
Ma, C.M., and Ruan, R.T., Adsorption of toluene on mesoporous materials from
waste solar panel as silica source, Applied Clay Science, 80-81, 196-201 2013.
Mahmoudi, J., Lotfollahi, M.N., and Asl, A.H., Comparison of synthesized
H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline
with propylene, Journal of Industrial and Engineering Chemistry, 24, 113-120
2015.
Mitsuma, Y., Ota, Y., and Hirose, T., Performance of thermal swing honeycomb
VOC concentrators, Journal of Chemical Engineering of Japan, 31, 482-484
1998.
Melendez-Ortiz, H.I., Mercado-Silva, A., Garcia-Cerda, L.A., Castruita, G., and
Perera-Mercado, Y.A., Hydrothermal synthesis of mesoporous silica MCM-41
using commercial sodium silicate, Journal of the Mexican Chemical Society,
57, 73-79 2013.
Nguyen, C., Sonwane, C.G., Bhatia, S.K., and Do, D.D., Adsorption of benzene
and ethanol on MCM-41 material, Langmuir, 14, 4950-49521998.
Nien, K.C., Chang, F.T., and Chang, M.B., Adsorption-desorption characteristics
of methyl ethyl ketone with modified activated carbon and inhibition of
2,3-butanediol production, Jounal of Air & Waste Management Association,
65, 1317-1326 2015.
Nien, K.C., Chang, F.T., and Chang, M.B., Adsorption of mesitylene via
mesoporous adsorbents, Journal of the Air & Waste Management Association,
67, 1319-1327 2017.
NIST Chemistry WebBook: https://www.nist.gov/ (2016).
Oh, K.J., Park, D.W., Kim, S. S., and Park, S.W., Breakthrough data analysis of
adsorption of volatile organic compounds on granular activated carbon,
Korean Journal of Chemical Engineering, 27, 632-638 2010.
Ohayon, D., Mao, R.L.V., Ciaravino, D., Hazel, H., Cochennec, A., and Rolland,
N., Methods for pore size engineering in ZSM-5 zeolite, Applied Catalysis B:
Environmental, 217, 241-251 2001.
Post, J.G., and van Hooff, J.H.C., Acidity and activity of H-ZSM-5 measured with
NH3 TPD and n-hexane cracking, Zeolites, 4, 9-14 1984.
Popescu, M., Joly, J.P., Carre, J., and Danatoiu, C., Dynamical adsorption and
temperature-programmed desorption of VOCs (toluene, butyl acetate and
butanol) on activated carbons, Carbon, 41, 739-748 2001.
Ramirez, D., Sullivan, P.D., Rood, M.J., and Hay, K.J., Equilibrium adsorption of
phenol-, tire-, and coal-derived activated carbon for organic vapors, Journal of
Environmental Engineering, 130, 231-241 2004.
Rodriguez-Gonzalez, L., Hermes, F., Bertmer, M., Rodriguez-Castellon, E.,
Jimenez-Lopez, A., and Simon U., The acid properties of H-ZSM-5 as studied
by NH3-TPD and 27Al-MAS-NMR spectroscopy, Applied Catalysis A: General,
328, 174-182 2007.
Rodriguez-Mirasol, J., Bedia, J., and Cordero, T., Influence of water vapor on the
adsorption of VOCs on lignin-based activated carbons, Separation Science and
Technology, 40, 3113-3135 2005.
118
Ruhl, M.J., Recover VOCs via adsorption on activated carbon, Chemical
Engineering Progress, July, 37-41 1993.
Ruthven, D.M., Principles of adsorption and adsorption process, John Wiley &
Sons, Inc., New York, 1984.
Sepehrian, H., Fasihi, J., and Mahani, M.K., Adsorption behavior studies of picric
acid on mesoporous MCM-41, Industrial & Engineering Chemistry Research,
48, 6772-6775 2009.
Shirazi, L., Jamshidi, E., and Ghasemi, M.R., The effect of Si/Al ratio of ZSM-5
zeolite on its morphology, acidity and crystal size, Crystal Research and
Technology, 43, 1300-1306 2008.
Sivakumar, M., Yamamoto, Y., Amutharani, D., Tsujita, Y., Yoshimizu, H., and
Kinoshita, T., Study on -form complex in a syndiotactic polystyrene/organic
molecules system, 1-preferential complexing behavior of xylene isomers,
Macromolecular Rapid Communications, 23, 77-79 2002.
Shiau, C.H., Pan, K.L., Yu, S.J., Yan, S.Y., and Chang, M.B., Desorption of
isopropyl alcohol from adsorbent with non-thermal plasma, Environmental
Technology, 38, 2314-232 2017.
Simon-Masseron, A., Marques, J.P., Lopes, J.M., Ribeiro, F.R., Gener, I., and
Guisnet, M., Influence of the Si/Al ratio and crystal size on the acidity and
activity of HBEA zeolites, Applied Catalysis A: General, 316, 75-82 2007.
Souza, M.J.B., Lima, S.H., Araujo, S.H., and Pedrosa. M.G., Determination of the
acidity of MCM-41 with different Si/Al ratios by the temperature programmed
desorption of pyridine, Adsorption Science & Technology, 25, 751-756 2007.
Stenzel, M.H., Remove organics by activated carbon adsorption, Chemical
Engineering Progress, 89, 36-43 1993.
Stoeckli, H.F., Kraehenbuehl, F., Ballerini, L., and Bernardini, S.D., Recent
development in the Dubinin equation, Carbon, 27, 125-128 1989.
Takeuchi, Y., Hayato, N., Miyata, S. A., and Harada, A., Adsorption of 1-butanol
and p-xylene vapour and their mixtures with high silica zeolites, Separation
Technology, 5, 23-24 1995.
Takeuchi, M., Hidaka, M., and Anpo, M., Efficient removal of toluene and
benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst, Journal of
Hazardous Materials, 237-238, 133-139 2012.
Tseng, R.L., Physical and chemical properties and adsorption type of activated
carbon prepared from plum kernels by NaOH activation, Journal of Hazardous
Materials, 147, 1020-1027 2007.
Wang, C.M., Chang, K.S., Chung, T.W., and Wu, H., Adsorption equilibria of
aromatic compounds on activated carbon, silica gel, and 13X zeolite, Journal
of Chemical & Engineering Data, 49, 527-531 2004.
Wang, C.M., Chung, T.W., Huang, C.M., and Wu, H., Adsorption equilibria of
acetate compounds on activated carbon, silica gel, and 13X zeolite, Journal of
Chemical & Engineering Data, 50, 811-816 2005.
Wang, Y., Sun, Y.Y., Lancelot, C., Lamonier, C., Morin, J.C., Revel, B., Delevoye,
L., and Rives. A., Effect of post treatment on the local structure of hierarchical
beta prepared by desilication and the catalytic performance in friedel–crafts
alkylation, Microporous and Mesoporous Materials, 206, 2015 42–51.
Wang, Y., Yang, D., Li, S., Chen, M., Guo, L., and Zhou, J., Ru/hierarchical
HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky
aromatic VOCs elimination, Microporous and Mesoporous Materials, 258,
17-25 2018.
120
Yamamoto, T., Endo, A., Ohmori, T., and Nakaiwa, M., Porous properties of
carbon gel microspheres as adsorbents for gas separation, Carbon, 42,
1671-1676 2004.
Yang, K., Xue, F., Sun, Q., Yue, R.L., and Lin, H., Adsorption of volatile organic
compounds by metal-organic frameworks MOF-177, Journal of
Environmental Chemical Engineering 1, 713-718 2013.
Yu, F.D., Luo, L.A., and Grevillot, G., Adsorption isotherms of VOCs onto an
activated carbon monolith: Experimental measurement and correlation with
different models, Journal of Chemical & Engineering Data, 47, 467-473 2002.
Zaitan, H., Manero, M.H., Valdes, H., Application of high silica zeolite ZSM-5 in
a hybrid treatment process based on sequential adsorption and ozonation for
VOCs elimination, Journal of Environmental Sciences, 41, 59-68 2016.
Zerbonia, R.A., Brockmann, C.M., and Peterson, P.R., Carbon bed fires and the
use of carbon canisters for air emissions control on fixed-roof tanks, Journal of
the Air & Waste Management Association, 51, 1617-1627 2001.
沈克鵬、施志恆、張豐堂、陳見財、粘竺耕揮發性有機物廢氣減量及處
理技術手冊,經濟部工業局,1994年。
白曛綾、李谷蘭、楊泰辰、黃文賢、林育旨,園區半導體製造業廢氣處理及
排放調查研究期末報告,2000年。
白曛綾、賴慶智、林育旨、康育豪、李谷蘭、曾映棠、劉政彰、 陳建志、張
國財、劉惠綺、楊德志,新竹科學園區半導體及光電製造業空氣污染防制
設施績效提升輔導,2001年。
白曛綾、盧重興、曾映棠、許世杰、張國財、林育旨、林家欣、 陳建志、洪
錦德,新竹科學園區半導體及光電製造業空氣污染防制設施績效提升輔導
II,2002。
張豐堂,次世代面板廠揮發性有機氣體淨化設備的特性研究,清華大學工程
與系統科學系博士論文,2005年。
顏秀慧、鄭福田,沸石對甲苯與丁酮之吸附研究,第十三屆空氣污染控制技
術研討會論文集,台北市,1996年。
蔡文田,含揮發性有機物廢氣之活性碳吸附與觸媒焚化處理研究,國立台灣
大學環境工程學研究所博士論文,1994年。
行政院環保署,空污費申報系統,民國104年。
行政院環保署,毒物及化學物質局資料,民國106年。
林文川,製程VOCs廢氣之收集與處理,工業污染防制第110期,2009
年。
行政院環境保護署網站: https://www.epa.gov.tw/mp.asp?mp=epa.
經濟部工業局, 工業減廢技術手冊-PU合成皮工業, 1997年。
傑智環境科技股份有限公司, 內部公司相關資料。
李立成, 活性炭蓄積熱起火案例分析, 2006年。
周更生,行政院國家科學委員會,各種表面塗裝作業揮發性有機物減量技術
調查評估計畫,1998年。
朱信,國科會空污防制科研計畫: 固定污染源揮發性有機物排放減量技術及
成效評估研究子計畫一:表面塗裝揮發性有機物之減量技術及成效評估,
2003年。
指導教授 張木彬(Moo-Been Chan) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明