博碩士論文 103389003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.116.36.192
姓名 羅旭峯(Xu-Feng Luo)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 石墨烯負極和離子液體電解液於鈉二次電池之應用
(Applications of graphene-based anodes and ionic liquid electrolytes for sodium secondary batteries)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 碳系超級電容器用耐高壓電解液研發
★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料★ 針對奈米多孔碳之表面及孔洞形貌進行優化 以打造具備高可靠度、低自放電的超級電容器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-20以後開放)
摘要(中) 本研究以鈉二次電池為主軸,分別針對石墨烯負極、離子液體電解液、SEI膜特性、安全性議題、石墨正極等各個議題進行探討。微電漿輔助製程之石墨烯(graphene nanosheets obtained by microplasma-assisted chemical vapor deposition technique,MPGNS)具有高結晶性和低缺陷密度。相較傳統RGO (reduced graphene oxides),MPGNS負極具有更優異之電化學特性,包括首圈庫倫效率(45%)、電容值(250 mAh g-1 at 0.03 A g-1)、高速充放電能力 (44% at 5 A g-1)。導入NaFSI/PMP-FSI離子液體電解液後,石墨烯負極之充放電可逆性進一步獲得提升,化成後之庫倫效率近100%。相較於傳統有機電解液,本研究結果顯示NaFSI/PMP-FSI離子液體所生成之SEI膜具有更理想的電化學穩定性和熱穩定性,因而提升了庫倫效率、循環穩定性和安全性。此外鈉離子濃度顯著地影響SEI膜之化學組成,2 M NaFSI/PMP-FSI電解液可使SEI膜中的有機/無機質成分比例達到理想平衡,可穩固SEI膜之結構並兼具良好的電化學穩定性。除了電解液配方之外,負極材料之表面特性同樣也影響著SEI膜的生成和其效能。以MPGNS為例,適量的表面官能基可做為SEI膜的成核點,提升SEI膜的生成效率,迅速地鈍化充電態負極。於電池的安全性議題方面,本研究透過DSC系統性地分析有機電解液、離子液體電解液、和石墨烯之含氧官能基對於SEI膜之熱穩定性以及各類電解液對於充電態負極之熱反應性。於離子液體之應用方面,本研究提出以NaFSI/PMP-FSI離子液體做為電解液之陰離子插層石墨正極,其平均4.5 V (vs. Na/Na+)之工作電位能提供高能量密度。石墨正極同時能使鈉離子電池脫離對於過渡金屬礦產之依賴,實現高經濟效益之鈉二次電池。
摘要(英) This thesis focuses on sodium secondary batteries, including investigation on graphene-based anodes, ionic liquid electrolytes, SEI chemistry, safety issues, and graphite cathodes. A microplasma-assisted chemical vapor deposition technique is used to produce graphene nanosheets (denoted as MPGNS). The obtained MPGNS has higher crystallinity and less defects, compared to those of conventional reduced graphene oxides. MPGNS is able to deliver a superior Coulombic efficiency of 45%, a high capacity of 250 mA h g-1(@ 0.03 A g-1), and show excellent rate capability (44% @ 5 A g-1). Using NaFSI/PMP-FSI ionic liquids as electrolytes, the electrochemical reversibility of graphene anodes was improved. After formation cycles, the Coulomic efficiency is close to 100%. This study demonstrates a superior SEI film derived by NaFSI/PMP-FSI ionic liquids, which exhibits a better stability against charge-discharge process and elevated temperatue, compared to those of conventional organic electrolytes. In this way, Coulombic efficiency, cyclic stability, and safety are enhanced. Moreover, Na ion fractions considerably impact on SEI chemistry. 2 M NaFSI/PMP-FSI generates the most robust SEI film with the ideal balance between organic and inorganic ingredients, improving the adhesion and electrochemical steadiness. Apart from electrolyte compositions, the surface characteristic also determines the formation and effectiveness of SEI films. Take MPGNS for example, the oxygen-containing functional groups can act as nucleation sites, and thus rapidly passivate charged anodes. Concerning the aspect of safety, this study systematically analyzes the thermal behaviors between charged anodes and electrolytes using DSC. Finally, anion intercalation into graphite cathodes using NaFSI/PMP-FSI as electrolytes shows the high working voltage above 4.5 V (vs. Na/Na+), which promisingly enables high energy density and replacement of rather expensive transition metal-based cathode materials.
關鍵字(中) ★ 鈉離子電池
★ 石墨烯
★ 離子液體
★ 固態電解質介面
★ 陰離子插層
關鍵字(英) ★ sodium secondary battery
★ graphene
★ ionic liquid
★ SEI film
★ anion intercalation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
第二章 研究背景及文獻回顧 5
2-1 鈉離子電池 5
2-2 鈉離子電池之負極材料 9
2-3 石墨烯和二維材料 11
2-4 石墨烯負極之發展與瓶頸 13
2-5 離子液體 17
2-6 固態電解質介面 20
2-7 影響SEI膜物化特性之因素 23
2-8 介面特性與電池的安全性 26
2-9 石墨正極與陰離子插層機制 28
第三章 實驗方法與步驟 31
3-1 碳材料製備 31
3-1-1 微電漿輔助製程之石墨烯 31
3-1-2 還原石墨烯氧化物 31
3-1-3 碳骨架 31
3-1-4 商用硬碳 32
3-1-5 中間相微碳球 32
3-2電解液製備 33
3-3 材料特性鑑定 34
3-3-1 碳材形貌之分析 34
3-3-2 碳材結晶結構分析 34
3-3-3 碳材缺陷結構鑑定 35
3-3-4 表面化學組成鑑定 35
3-3-5 充電負極和電解液之熱反應鑑定 35
3-4電化學測試實驗步驟 36
3-4-1 循環伏安法 36
3-4-2 計時電位法 37
3-4-3 交流阻抗 37
3-4-4 恆電流間歇滴定技術 37
第四章 結果與討論 38
4-1電漿輔助製程對於石墨烯特性之影響 38
4-1-1 形貌觀察 38
4-1-2 含氧官能基鑑定 40
4-1-3 石墨烯缺陷鑑定 41
4-1-4 結晶結構分析 41
4-1-5 振實密度分析 43
4-1-6 石墨烯電極之電化學特性 44
4-2 3D碳骨架負極之材料與充放電特性 53
4-2-1 碳材形貌觀察 53
4-2-2 材料結構分析 55
4-2-3 含氧官能基鑑定 56
4-2-4 碳骨架電極(3-D CF)於1 M NaFSI/PMP-FSI電解液之電化學特性 57
4-2-5 碳骨架電極(3-D CF)於1 M NaTFSI/PMP-TFSI電解液之電化學特性 60
4-2-6 碳骨架電極(3-D CF)於1 M NaClO4/EC:DEC電解液之電化學特性 61
4-2-7 SEI膜之化學組成、電化學穩定性和熱反應性 64
4-2-8 3-D CF 電極之循環穩定性 67
4-3 電漿法輔助製程之石墨烯使用離子液體電解液之電化學性質 69
4-3-1 NaFSI之濃度對於電化學行為之影響 69
4-3-2 NaFSI之濃度對於庫倫效率的影響 70
4-3-3 NaFSI之濃度對於充放電表現的影響 72
4-3-4 NaFSI之濃度對於循環穩定性的影響 73
4-4 電漿法輔助製程石墨烯之SEI膜的物化特性 75
4-4-1 NaFSI之濃度對於SEI膜組成的影響 75
4-4-2 NaFSI之濃度對於SEI膜的熱反應性之影響 79
4-4-3 MPGNS的表面官能基對於SEI膜組成的影響 80
4-5 NaFSI/PMP-FSI離子液體應用於石墨之陰離子插層 87
4-5-1 石墨之材料特性 87
4-5-2 鋁基材和xNaFSI/PMP-FSI離子液體之電化學穩定性 88
4-5-3 石墨正極使用xNaFSI/PMP-FSI電解液之庫倫效率 89
4-5-4 石墨正極使用xNaFSI/PMP-FSI電解液之充放電特性 91
4-5-5 石墨正極之能量密度推算 94
4-5-6 石墨正極之數據統整和後續規劃 95
第五章 結論 96
已發表之國際期刊 98
參考文獻 99
參考文獻 [1] J.M. Tarascon, Is lithium the new gold?, Nature Chemistry, 2010, 2, 510.
[2] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science, 2012, 16, 168.
[3] S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy & Environmental Science, 2013, 6, 2067.
[4] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chemical Reviews, 2014, 114, 11636.
[5] A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacín, In search of an optimized electrolyte for Na-ion batteries, Energy & Environmental Science, 2012, 5, 8572.
[6] Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, High-capacity anode materials for sodium-ion batteries, Chemistry, 2014, 20, 11980.
[7] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy & Environmental Science, 2012, 5, 5884.
[8] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Update on Na-based battery materials. A growing research path, Energy & Environmental Science, 2013, 6, 2312.
[9] M.M. Doeff, Y. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical insertion of sodium into carbon, Journal of the Electrochemical Society, 1993, 140, 169.
[10] P. Ge, M. Fouletier, Electrochemical intercalation of sodium in graphite, Solid State lonics, 1988, 28-30, 1172.
[11] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 2007, 6, 183.
[12] X.F. Luo, C.H. Yang, Y.Y. Peng, N.W. Pu, M.D. Ger, C.T. Hsieh, J.K. Chang, Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries, Journal of Materials Chemistry A, 2015, 3, 10320-10326.
[13] X.F. Luo, C.H. Yang, J.K. Chang, Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets, Journal of Materials Chemistry A, 2015, 3, 17282.
[14] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nature Materials, 2015, 14, 271.
[15] K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 2012, 490, 192.
[16] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of American Chemical Society, 1958, 80, 1339.
[17] H.L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties, Nanoscale, 2012, 4, 3515.
[18] P.A. Denis, F. Iribarne, Comparative study of defect reactivity in graphene, The Journal of Physical Chemistry C, 2013, 117, 19048.
[19] M.M. Islam, C.M. Subramaniyam, T. Akhter, S.N. Faisal, A.I. Minett, H.K. Liu, K. Konstantinov, S.X. Dou, Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries, Journal of Materials Chemistry A, 2017, 5, 5290.
[20] G. Ma, K. Huang, Q. Zhuang, Z. Ju, Superior cycle stability of nitrogen-doped graphene nanosheets for Na-ion batteries, Materials Letters, 2016, 174, 221.
[21] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical Reviews, 2004, 104, 4303.
[22] E. Peled, S. Menkin, Review—SEI: Past, Present and Future, Journal of The Electrochemical Society, 2017, 164, A1703.
[23] D.I. Iermakova, R. Dugas, M.R. Palacín, A. Ponrouch, On the comparative stability of li and na metal anode interfaces in conventional alkyl carbonate electrolytes, Journal of The Electrochemical Society, 2015, 162, A7060.
[24] R. Mogensen, D. Brandell, R. Younesi, Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries, ACS Energy Letters, 2016, 1, 1173.
[25] J. Song, B. Xiao, Y. Lin, K. Xu, X. Li, Interphases in Sodium-ion batteries, Advanced Energy Materials, 2018, 8, 1703082.
[26] M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices, Chemical Reviews, 2017, 117, 7190.
[27] A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D.R. MacFarlane, P.C. Howlett, M. Forsyth, Ionic liquids and organic ionic plastic crystals: Advanced electrolytes for safer high performance sodium energy storage technologies, Advanced Energy Materials, 2018, 8, 1703491.
[28] R. Hagiwara, K. Matsumoto, J. Hwang, T. Nohira, Sodium ion batteries using ionic liquids as electrolytes, The Chemical Record, 2018, 18, 1.
[29] G.G. Eshetu, S. Grugeon, H. Kim, S. Jeong, L. Wu, G. Gachot, S. Laruelle, M. Armand, S. Passerini, Comprehensive insights into the reactivity of electrolytes based on sodium ions, ChemSusChem, 2016, 9, 462.
[30] I.A. Shkrob, T.W. Marin, Y. Zhu, D.P. Abraham, Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry, The Journal of Physical Chemistry C, 2014, 118, 19661.
[31] P. Balbuena, Y. Wang, Lithium-ion batteries, Solid-Electrolyte Interphase, 2004.
[32] E.P.D.G.J. Penciner, The anode-electrolyte interface, Handbook of Battery Materials, Second Edition, 2011.
[33] N. Wongittharom, T.C. Lee, C.H. Hsu, G. Ting Kuo Fey, K.P. Huang, J.K. Chang, Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: Effects of Li salt at 25°C and 50°C, Journal of Power Sources, 2013, 240, 676.
[34] H. Yang, H. Bang, K. Amine, J. Prakash, Investigations of the exothermic reactions of natural graphite anode for li-ion batteries during thermal runaway, Journal of The Electrochemical Society, 2005, 152, A73.
[35] X. Xia, J.R. Dahn, Study of the reactivity of Na/hard carbon with different solvents and electrolytes, Journal of The Electrochemical Society, 2012, 159, A515.
[36] F. Bordet, K. Ahlbrecht, J. Tübke, J. Ufheil, T. Hoes, M. Oetken, M. Holzapfel, Anion intercalation into graphite from a sodium-containing electrolyte, Electrochimica Acta, 2015, 174, 1317.
[37] J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future, Chemical Society Reviews, 2017, 46, 3529.
[38] K. Matsumoto, Y. Okamoto, T. Nohira, R. Hagiwara, Thermal and transport properties of Na[N(SO2F)2]–[N-methyl-N-propylpyrrolidinium][N(SO2F)2] ionic liquids for na secondary batteries, The Journal of Physical Chemistry C, 2015, 119, 7648.
[39] M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells, The Journal of Physical Chemistry C, 2016, 120, 4276.
[40] T. Fukutsuka, F. Yamane, K. Miyazaki, T. Abe, Electrochemical intercalation of bis(fluorosulfonyl)amide Anion into Graphite, Journal of The Electrochemical Society, 2015, 163, A499.
[41] K. Beltrop, X. Qi, T. Hering, S. Röser, M. Winter, T. Placke, Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries, Journal of Power Sources, 2018, 373, 193.
[42] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, Chemical Reviews, 2004, 104, 4245.
[43] J. Liu, J.G. Zhang, Z. Yang, J.P. Lemmon, C. Imhoff, G.L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V.V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, B. Schwenzer, Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid, Advanced Functional Materials, 2013, 23, 929.
[44] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, Journal of Power Sources, 2013, 226, 272.
[45] S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington, Global lithium resources: Relative importance of pegmatite, brine and other deposits, Ore Geology Reviews, 2012, 48, 55.
[46] H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy & Environmental Science, 2013, 6, 2338.
[47] Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Letters, 2012, 12, 3783.
[48] H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries, Journal of Materials Chemistry A, 2015, 3, 17899.
[49] M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes, Carbon, 2016, 98, 162.
[50] Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: Recent progress and perspectives, Energy Storage Materials, 2019, 16, 323.
[51] L. Shi, T. Zhao, Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries, Journal of Materials Chemistry A, 2017, 5, 3735.
[52] J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams, Advanced Matererials, 2015, 27, 2042.
[53] J. Zhao, Y.Z. Zhang, F. Zhang, H. Liang, F. Ming, H.N. Alshareef, Z. Gao, Partially Reduced holey graphene oxide as high performance anode for sodium-ion Batteries, Advanced Energy Materials, 2019, 9, 1803215.
[54] H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang, L.M. Wang, X.B. Zhang, Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries, ChemSusChem, 2013, 6, 56.
[55] Y.S. Yun, Y.U. Park, S.J. Chang, B.H. Kim, J. Choi, J. Wang, D. Zhang, P.V. Braun, H.J. Jin, K. Kang, Crumpled graphene paper for high power sodium battery anode, Carbon, 2016, 99, 658.
[56] B.K. Ong, H.L. Poh, C.K. Chua, M. Pumera, Graphenes prepared by Hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater, Electroanalysis, 2012, 24, 2085.
[57] R. Raccichini, A. Varzi, D. Wei, S. Passerini, Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes, Advanced Materials, 2017, 29, 1603421.
[58] R.M. Sankaran, K.P. Giapis, Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition, Journal of Applied Physics, 2002, 92, 2406.
[59] D. Mariotti, R.M. Sankaran, Microplasmas for nanomaterials synthesis, Journal of Physics D: Applied Physics, 2010, 43, 323001.
[60] F. Ghezzi, G. Cacciamani, R. Caniello, D.C. Toncu, F. Causa, D. Dellasega, V. Russo, M. Passoni, Carbon structures grown by direct current microplasma: diamonds, single-wall nanotubes, and graphene, The Journal of Physical Chemistry C, 2014, 118, 24714.
[61] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, 2010, 39, 228.
[62] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nature Chemistry, 2010, 2, 1015.
[63] R. Hagiwara, J.S. Lee, Ionic liquids for electrochemical devices, Electrochemistry, 2007, 75, 23.
[64] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, 2009, 8, 621.
[65] J.K. Chang, S.Y. Chen, W.T. Tsai, M.J. Deng, I.W. Sun, Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior, Electrochemistry Communications, 2007, 9, 1602.
[66] M.J. Earle, J.M. Esperanca, M.A. Gilea, J.N. Lopes, L.P. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, The distillation and volatility of ionic liquids, Nature, 2006, 439, 831.
[67] F. Endres, S. Zein El Abedin, Air and water stable ionic liquids in physical chemistry, Physical Chemistry Chemical Physics, 2006, 8, 2101.
[68] D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini, J.M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. Zheng, S. Zhang, J. Zhang, Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nature Reviews Materials, 2016, 1, 15005.
[69] L.G. Chagas, D. Buchholz, L. Wu, B. Vortmann, S. Passerini, Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte, Journal of Power Sources, 2014, 247, 377.
[70] C. Ding, T. Nohira, R. Hagiwara, A high-capacity TiO2/C negative electrode for sodium secondary batteries with an ionic liquid electrolyte, Journal of Materials Chemistry A, 2015, 3, 20767.
[71] C. Ding, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range, Electrochimica Acta, 2015, 176, 344.
[72] A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, Performance validation of sodium-ion batteries using an ionic liquid electrolyte, Journal of Applied Electrochemistry, 2016, 46, 487.
[73] C.H. Wang, Y.W. Yeh, N. Wongittharom, Y.C. Wang, C.J. Tseng, S.W. Lee, W.S. Chang, J.K. Chang, Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes, Journal of Power Sources, 2015, 274, 1016.
[74] C.Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Improved electrochemical performance of NaVOPO4 positive electrodes at elevated temperature in an ionic liquid electrolyte, Journal of The Electrochemical Society, 2015, 162, A2093.
[75] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 2016, 105, 52.
[76] Y. Yamada, A. Yamada, Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries, Chemistry Letters, 2017, 46, 1056.
[77] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium-ion batteries: State of the art and perspectives, ChemSusChem, 2015, 8, 2154.
[78] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Advanced Functional Materials, 2011, 21, 3859.
[79] L. Bodenes, A. Darwiche, L. Monconduit, H. Martinez, The Solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, Journal of Power Sources, 2015, 273, 14.
[80] F.A. Soto, A. Marzouk, F. El-Mellouhi, P.B. Balbuena, Understanding Ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: Insights from first-principles calculations, Chemistry of Materials, 2018, 30, 3315.
[81] A. Ponrouch, R. Dedryvère, D. Monti, A.E. Demet, J.M. Ateba Mba, L. Croguennec, C. Masquelier, P. Johansson, M.R. Palacín, Towards high energy density sodium ion batteries through electrolyte optimization, Energy & Environmental Science, 2013, 6, 2361.
[82] A. Balducci, M. Schmuck, W. Kern, B. Rupp, S. Passerini, M. Winter, Ionic liquids as electrolyte in lithium batteries- in situ FTIRs studies on the use of electrolyte additives, ECS Transactions, 2008, 11, 109.
[83] C.H. Wang, C.H. Yang, J.K. Chang, Suitability of ionic liquid electrolytes for room-temperature sodium-ion battery applications, Chemical Communications, 2016, 52, 10890.
[84] M. Dahbi, M. Fukunishi, T. Horiba, N. Yabuuchi, S. Yasuno, S. Komaba, High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries, Journal of Power Sources, 2017, 363, 404.
[85] J. Hwang, K. Matsumoto, R. Hagiwara, Symmetric cell electrochemical impedance spectroscopy of Na2FeP2O7 positive electrode material in ionic liquid electrolytes, The Journal of Physical Chemistry C, 2018, 122, 26857.
[86] K. Takada, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama, Y. Tateyama, K. Hirata, T. Kawase, A. Yamada, Unusual passivation ability of superconcentrated electrolytes toward hard carbon negative electrodes in sodium-ion batteries, ACS Applied Materials & Interfaces, 2017, 9, 33802.
[87] S.H. Ng, C. Vix-Guterl, P. Bernardo, N. Tran, J. Ufheil, H. Buqa, J. Dentzer, R. Gadiou, M.E. Spahr, D. Goers, P. Novák, Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries, Carbon, 2009, 47, 705.
[88] J. Collins, G. Gourdin, M. Foster, D. Qu, Carbon surface functionalities and SEI formation during Li intercalation, Carbon, 2015, 92, 193.
[89] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 2006, 162, 1379.
[90] A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 2016, 9, 1955.
[91] J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries, Advanced Science, 2017, 4, 1700146.
[92] T. Placke, G. Schmuelling, R. Kloepsch, P. Meister, O. Fromm, P. Hilbig, H.W. Meyer, M. Winter, In situ X-ray diffraction studies of cation and anion inter­calation into graphitic carbons for electrochemical energy storage applications, ZAAC, 2014, 640, 1996.
[93] M.K. Tatsumi Ishihara, Hiroshige Matsumoto, Masaki Yoshio, Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery, Electrochemical and Solid-State Letters, 2007, 10, A74.
[94] M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density, Advanced Energy Materials, 2017, 7, 1601963.
[95] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy & Environmental Science, 2015, 8, 81.
[96] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew Chem Int Ed Engl, 2015, 54, 3431.
[97] S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Advanced Energy Materials, 2012, 2, 710.
[98] A.L. Gulley, E.A. McCullough, K.B. Shedd, China′s domestic and foreign influence in the global cobalt supply chain, Resources Policy, 2019, 62, 317.
[99] S.J.K. M.A. Boland, Cobalt—For Strength and Color, U.S. Geological Survey Fact Sheet 2011-3081, 2011, available at https://pubs.usgs.gov/fs/2011/3081/.
[100] H.J. Liao, Y.M. Chen, Y.T. Kao, J.Y. An, Y.H. Lai, D.Y. Wang, Freestanding cathode electrode design for high-performance sodium dual-ion battery, The Journal of Physical Chemistry C, 2017, 121, 24463.
[101] Y. Qiao, K. Jiang, X. Li, H. Deng, Y. He, Z. Chang, S. Wu, S. Guo, H. Zhou, A Hybrid Electrolytes design for capacity-equivalent dual-graphite battery with superior long-term cycle life, Advanced Energy Materials, 2018, 8, 1801120.
[102] A. Wang, W. Yuan, J. Fan, L. Li, A Dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte, Energy Technology, 2018, 6, 2172.
[103] P. Meister, V. Siozios, J. Reiter, S. Klamor, S. Rothermel, O. Fromm, H.W. Meyer, M. Winter, T. Placke, Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite, Electrochimica Acta, 2014, 130, 625.
[104] Y.Y. Peng, Y.M. Liu, J.K. Chang, C.H. Wu, M.D. Ger, N.W. Pu, C.L. Chang, A facile approach to produce holey graphene and its application in supercapacitors, Carbon, 2015, 81, 347.
[105] C.T. Hsieh, Y.F. Chen, C.E. Lee, Y.M. Chiang, H. Teng, Thermal transport in stereo carbon framework using graphite nanospheres and graphene nanosheets, Carbon, 2016, 106, 132-141.
[106] H.B. Zhang, J.W. Wang, Q. Yan, W.G. Zheng, C. Chen, Z.Z. Yu, Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide, Journal of Materials Chemistry, 2011, 21, 5392.
[107] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B, 2006, 110, 8535.
[108] M. Passoni, V. Russo, D. Dellasega, F. Causa, F. Ghezzi, D. Wolverson, C.E. Bottani, Raman spectroscopy of nonstacked graphene flakes produced by plasma microjet deposition, Journal of Raman Spectroscopy, 2012, 43, 884.
[109] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, 45, 1558.
[110] S. Das, S. Singh, V. Singh, D. Joung, J.M. Dowding, D. Reid, J. Anderson, L. Zhai, S.I. Khondaker, W.T. Self, S. Seal, Oxygenated functional group density on graphene oxide: Its effect on cell toxicity, Particle & Particle Systems Characterization, 2013, 30, 148.
[111] Z. Liu, X. Duan, X. Zhou, G. Qian, J. Zhou, W. Yuan, Controlling and formation mechanism of oxygen-containing groups on graphite oxide, Industrial & Engineering Chemistry Research, 2014, 53, 253.
[112] A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus, Raman spectroscopy in graphene related systems, WILEY-VCH, 2011.
[113] T.C. Chieu, M.S. Dresselhaus, M. Endo, Raman studies of benzene-derived graphite fibers, Physical Review B, 1982, 26, 5867.
[114] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 2009, 473, 51.
[115] Z. Jiang, B. Pei, A. Manthiram, Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance, Journal of Materials Chemistry A, 2013, 1, 7775.
[116] J. Wan, F. Shen, W. Luo, L. Zhou, J. Dai, X. Han, W. Bao, Y. Xu, J. Panagiotopoulos, X. Fan, D. Urban, A. Nie, R. Shahbazian-Yassar, L. Hu, In situtransmission electron microscopy observation of sodiation–desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode, Chemistry of Materials, 2016, 28, 6528.
[117] G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon, 2009, 47, 2049.
[118] Y. Zhao, M. Liu, L. Gan, X. Ma, D. Zhu, Z. Xu, L. Chen, Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode, Energy & Fuels, 2014, 28, 1561.
[119] M. Liu, J. Qian, Y. Zhao, D. Zhu, L. Gan, L. Chen, Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, Journal of Materials Chemistry A, 2015, 3, 11517.
[120] Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L.V. Saraf, G. Exarhos, J.G. Zhang, J. Liu, Surface-driven sodium ion energy storage in nanocellular carbon foams, Nano Letters, 2013, 13, 3909.
[121] H. Azuma, H. Imoto, S.i. Yamada, K. Sekai, Advanced carbon anode materials for lithium ion cells, Journal of Power Sources, 1999, 81-82, 1.
[122] K. Kuratani, M. Yao, H. Senoh, N. Takeichi, T. Sakai, T. Kiyobayashi, Na-ion capacitor using sodium pre-doped hard carbon and activated carbon, Electrochimica Acta, 2012, 76, 320.
[123] K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, T. Shimizu, H. Ishida, NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery, Journal of Power Sources, 2013, 225, 137.
[124] I. Hasa, S. Passerini, J. Hassoun, Characteristics of an ionic liquid electrolyte for sodium-ion batteries, Journal of Power Sources, 2016, 303, 203.
[125] L. Wu, A. Moretti, D. Buchholz, S. Passerini, D. Bresser, Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries, Electrochimica Acta, 2016, 203, 109.
[126] H. Usui, Y. Domi, M. Shimizu, A. Imoto, K. Yamaguchi, H. Sakaguchi, Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery, Journal of Power Sources, 2016, 329, 428.
[127] W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges, Energy Storage Materials, 2016, 2, 107.
[128] M.H. Chakrabarti, C.T.J. Low, N.P. Brandon, V. Yufit, M.A. Hashim, M.F. Irfan, J. Akhtar, E. Ruiz-Trejo, M.A. Hussain, Progress in the electrochemical modification of graphene-based materials and their applications, Electrochimica Acta, 2013, 107, 425.
[129] M. Egashira, T. Tanaka, N. Yoshimoto, M. Morita, Influence of ionic liquid species in non-aqueous electrolyte on sodium insertion into hard carbon, Electrochemistry, 2012, 80, 755.
[130] J. Zhang, D.W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.H. Yang, Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase, Energy & Environmental Science, 2017, 10, 370.
[131] H.C. Chen, J. Patra, S.W. Lee, C.J. Tseng, T.Y. Wu, M.H. Lin, J.K. Chang, Electrochemical Na+ storage properties of SnO2/graphene anodes in carbonate-based and ionic liquid electrolytes, Journal of Materials Chemistry A, 2017, 5, 13776.
[132] A.G. Wren, R.W. Phillips, L.U. Tolentino, Surface reactions of chlorine molecules and atoms with water and sulfuric acid at low temperatures, Journal of Colloid and Interface Science, 1979, 70, 544.
[133] Z. Shuxian, W.K. Hall, G. Ertl, H. Knözinger, X-ray photoemission study of oxygen and nitric oxide adsorption on MoS2, Journal of Catalysis, 1986, 100, 167.
[134] J. Sharma, D.S. Downs, Z. Iqbal, F.J. Owens, X‐ray photoelectron spectroscopy of S2N2 and the solid state polymerization of S2N2 to metallic (SN)x, The Journal of Chemical Physics, 1977, 67, 3045.
[135] A. Barrie, F.J. Street, An Auger and X-ray photoelectron spectroscopic study of sodium metal and sodium oxide, Journal of Electron Spectroscopy and Related Phenomena, 1975, 7, 1.
[136] P.H. Citrin, High-Resolution X-ray photoemission from sodium metal and its hydroxide, Physical Review B, 1973, 8, 5545.
[137] F.A. Soto, P. Yan, M.H. Engelhard, A. Marzouk, C. Wang, G. Xu, Z. Chen, K. Amine, J. Liu, V.L. Sprenkle, F. El-Mellouhi, P.B. Balbuena, X. Li, Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon, Advanced Materials, 2017, 29, 1606860.
[138] S. Ray, R.P. Cooney, Thermal degradation of polymer and polymer composites, in: Handbook of Environmental Degradation of Materials, 2012, pp. 213.
[139] C. Ding, T. Nohira, K. Kuroda, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range, Journal of Power Sources, 2013, 238, 296.
[140] K. Matsumoto, T. Hosokawa, T. Nohira, R. Hagiwara, A. Fukunaga, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, The Na[FSA]–[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA−:bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Journal of Power Sources, 2014, 265, 36.
指導教授 張仍奎 李勝偉(Jeng-Kuei Chang Sheng-Wei Lee) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明