博碩士論文 103421030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.204.48.40
姓名 簡苙安(Li-An Chien)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 電子發票巨量資料視覺化分析-以酒的消費為例
(Big Data Visualization of E-invoices on Alcohol Expenditure)
相關論文
★ 美國軟體產業創新活動與財務效率分析★ Performance Measurements of Web 2.0, Social Media, and Mobile Apps for Municipal Emergency Management
★ 中國大陸股權結構與自願性財務預測之關聯性★ 我國半導體產業下游公司法人說明會對供應鏈上游公司投資現金流量敏感度的影響
★ 線上串流音樂服務之使用者抗拒意圖研究★ 從認知理論探討創業機會辨識對績效之影響
★ 影響Y世代消費者對智慧綠色產品購買意圖與使用意圖的因素:以智慧節能裝置為例★ Application of social media mining on the comparison between two-dimensional barcode and near field communication
★ 應用社群探勘技術分析城市之創業精神與新創公司的特性★ 科技接受度與學習風格對於頭戴式虛擬實境應用在學習行為意圖的影響
★ 應用文字探勘分析ERP之趨勢發展:以Twitter為例★ 社群媒體文字採礦之研究:以第三方物流公司為例
★ 應用文字探勘技術分析遊戲產業趨勢:以兩大遊戲展之相關推文為例★ 台灣有機食品消費與疾病死亡率之視覺化分析
★ 酒類消費與犯罪率之視覺化分析★ 零售業粉絲專頁分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 2015年全球酒類消費市場價值約9000億美元,可見酒類消費的潛力與發展商機非常龐大而不容忽視。過去未有研究使用電子發票來做相關的分析,多是以市場調查或問卷資料來進行酒類消費的研究,所以藉由電子發票來了解酒類消費,相對來說比較缺乏,而隨著電子發票的普及其實更能夠去了解市場的情況。因此,本研究致力於從電子發票資料,研究酒類消費的議題,一開始將執行一連串的資料清理步驟,並以視覺化的方式呈現分析結果。研究主要的發現有三點,一、從折線圖與堆疊圖的視覺化分析,發現消費者酒類平均發票金額在每小時的時間分布上有明顯的波狀趨勢,在早上11點、下午3點及晚上8點時的平均發票金額最高。二、以雙軸圖視覺化分析呈現酒類消費與景氣的關係,發現每月酒類消費總金額與景氣燈號沒有顯著的相關,但與每月物價指數呈現出顯著中度的正向相關。三、在地理區面向,以氣泡圖、熱圖視覺化呈現縣市地區的結果,而矩形樹狀結構與箱型圖視覺化分析更細部的鄉鎮區購買分析。其中,北部及南部呈現出明顯的消費行為差異。因此,此份研究提供相關廠商及酒商從不同面向來了解酒類消費的情形,並根據研究結果制定市場布局的策略或銷售時點等議題。
摘要(英) The global alcoholic beverage industry is an estimated USD 900 billion business in 2015. Previous researches on the topic of alcohol expenditure generally use data from surveys and market research to analyze the relationships between influencing factors and alcohol expenditure. However, since Taiwan is among leading countries adopting nationwide e-invoice usage toward reducing transaction cost in corporate and public sector, it’s worth utilizing e-invoice transaction data to learn about alcohol spending behavior. Accordingly, this study aims to explore the information of alcohol expenditure from e-invoice data. Data cleansing and classification were conducted in this study and the results were presented by the methods of data visualization. From the perspective of hourly pattern, 11 am, 3 pm and 8 pm were the peak hours of alcohol spending in Taiwan. In addition, by using dual chart to visualize the analysis, it is concluded that there was a significantly moderate correlation between alcohol expenditure and CPI. On the other hand, monitoring indicator and alcohol expenditure were not closely related. Furthermore, the evident difference of alcohol expenditure was shown between the northern and the southern region by visualized methods such as filled maps with pie charts, bubble charts, treemaps and box plots. Hence, this study provides the visualized insights to the related industries such as tobacco and alcohol to explore business opportunities by region.
關鍵字(中) ★ 酒類消費
★ 電子發票
★ 大數據
★ 視覺化分析
關鍵字(英) ★ Alcohol expenditure
★ e-invoice
★ big data
★ visualization
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 3
Chapter 2 Literature Review 5
2.1 Consumer Spending & Economic Condition 5
2.2 Alcohol Spending & Economic Condition 12
Chapter 3 Methodology 15
3.1 Data Collection 15
3.2 Data Preparation 16
3.3 Data Visualization 25
3.3.1 Approaches of Data Visualization 25
3.3.2 Economic Indicator 28
Chapter 4 Visualization Analysis 31
4.1 Visualization by Time & Category 31
4.2 Alcohol Expenditure versus Economics Indicator 37
4.3 Visualization by Geographic Region 42
Chapter 5 Conclusion 66
References 68
參考文獻 Atkinson, A. B., Gomulka, J., & Stern, N. H. (1990). Spending on Alcohol Evidence from the Family Expenditure Survey 1970-1983. The Economic Journal, 100(402), 808-827.
Carroll, C. D., Fuhrer, J. C., & Wilcox, D. W. (1994). Does Consumer Sentiment Forecast Household Spending? If So, Why? The American Economic Review, 84(5), 1397-1408.
Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347. doi:10.1016/j.ins.2014.01.015
Chen, H., Frank, M. Z., & Wu, O. Q. (2005). What Actually Happened to the Inventories of American Companies Between 1981 and 2000. Management Science, 51(7), 1015-1031.
Chen, S. W. (2003). Is Taiwan’s 10th Business Cycle Over Yet? A Simple Note. Taiwan Economic Forecast and Policy, 33(2), 39-60.
Dagnino, G. (2001). Profiting in Bull or Bear Markets.
Dedeke, A. N., & Watson, N. H. (2008). Dedeke_Exploring Inventory Trends in Six U.S. Retail Segments. Harvard Business School, 8(78).
Freeman, D. G. (1999). A note on ‘Economic conditions and alcohol problems’. Journal of Health Economics, 18(5), 661-670. doi:10.1016/S0167-6296(99)00005-3
Jiménez-Martín, S., Labeaga, J. M., & Prieto, C. V. (2006). Further evidence about alcohol consumption and the business cycle.
Kamakura, W. A., & Yuxing Du, R. (2012). How Economic Contractions and Expansions Affect Expenditure Patterns. Journal of Consumer Research, 39(2), 229-247. doi:10.1086/662611
Kushwaha, S. K. T. (2014). Differences in Retail Inventory Investment Behavior During Macroeconomic Shocks- Role of Service Level. Production and Operations Management, 23(12), 2118–2136.
Lamey, L., Deleersnyder, B., & Dekimpe, J.-B. E. M. S. M. G. (2012). The Effect of Business-Cycle Fluctuations on Private-Label Share: What Has Marketing Conduct Got to Do with It? , 76(1), 1-19. doi:10.2307/41406835
Leeper, E. M. (1992). Consumer Attitudes: King for a Day. Federal Reserve Bank of Atlanta Economic Review, 77(3), 1-16.
Leungb, A.-S. C. M. T., & Daoukc, H. (2003). Application of neural networks to an emerging Operation Research in Emerging Economics, 30(6), 901–923.
Ludvigson, S. C. (2004). Consumer Confidence and Consumer Spending. Journal of Economic Perspectives, 18(2), 29-50.
McCarthy, J., & Zakrajsek, E. (2000). Microeconomic inventory adjustment: evidence from U.S. firm-level data. Federal Reserve Bank of New York Research Paper Series, 2000-24.
Miau, S., Wu, C. C., & Chen, S. C. (2014). Toward a smart government- An experience of E-invoice development in Taiwan. PACIS 2014 Proceedings.
Nardi, M. D., French, E., & Benson, D. (2012). Consumption and the Great Recession.
Pao, H. (2006). Comparing linear and nonlinear forecasts for Taiwan′s electricity consumption. Energy, 31(12), 2129-2141. doi:10.1016/j.energy.2005.08.010
Petev, I., Pistaferri, L., & Saporta-Eksten, I. (2011). Consumption and the Great Recession: Analysis of Trends, Perceptions, and Distributional Effects. Stanford University, 161-195.
PewResearchCenter. (2010). A Balance Sheet at 30 Months: How the Great Recession Has Changed Life in America. Pew Social and Demographic Trends report.
Popovici, I., & French, M. T. (2013). Does Unemployment Lead to Greater Alcohol Consumption? Ind Relat (Berkeley), 52(2), 444-466. doi:10.1111/irel.12019
Poser, G. n., & Bloesch, D. (2000). Economic Surveys and Data Analysis. OECD Publication, 2, 386.
Ruhm, C. J. (1995). Economic conditions and alcohol problems. Journal of Health Economics, 14(5), 583-603. doi:10.1016/0167-6296(95)00024-0
Souleles, N. S. (2004). Expectations, Heterogeneous Forecast Errors, and Consumption:Micro Evidence from the Michigan Consumer Sentiment Surveys.pdf>. Money, Credit and Banking, 36(1), 39-72.
Vuchelen, J. (2004). Consumer sentiment and macroeconomic forecasts. Journal of Economic Psychology, 25(4), 493-506. doi:10.1016/s0167-4870(03)00031-x
Yen, S. T., Yuan, Y., & Liu, X. (2009). Alcohol consumption by men in China: A non-Gaussian censored system approach. China Economic Review, 20(2), 162-173. doi:10.1016/j.chieco.2009.03.001
Zinovyev, A. (2011). Data visualization in political and social sciences. SAGE International Encyclopedia of Political Science.
洪淑雅. (2009). 影響個人房貸逾放之因素探討-景氣因素之干擾效果.
指導教授 沈建文(Chien-wen Shen) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明