博碩士論文 103423032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.191.45.169
姓名 楊棨鈞(Chi-Chun Yang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用相關回饋之概念資訊 於文件重排序之方法
(The application of the concept information residing in relevance feedback for document re-ranking)
相關論文
★ 信用卡盜刷防治簡訊規則製作之決策支援系統★ 不同檢索策略之效果比較
★ 知識分享過程之影響因子探討★ 兼具分享功能之檢索代理人系統建構與評估
★ 犯罪青少年電腦態度與學習自我效能之研究★ 使用AHP分析法在軟體度量議題之研究
★ 優化入侵規則庫★ 商務資訊擷取效率與品質促進之研究
★ 以分析層級程序法衡量銀行業導入企業應用整合系統(EAI)之關鍵因素★ 應用基因演算法於叢集電腦機房強迫對流裝置佈局最佳近似解之研究
★ The Development of a CASE Tool with Knowledge Management Functions★ 以PAT tree 為基礎發展之快速搜尋索引樹
★ 以複合名詞為基礎之文件概念建立方式★ 利用使用者興趣檔探討形容詞所處位置對評論分類的重要性
★ 透過半結構資訊及使用者回饋資訊以協助使用者過濾網頁文件搜尋結果★ 利用feature-opinion pair建立向量空間模型以進行使用者評論分類之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在文字探勘的領域中,向量空間模型上的相關回饋研究,是以使用者對於系統所回傳的相關文件清單,萃取其字頻資訊作為回饋的特徵值,該模型以Rocchio查詢擴張最被廣泛使用,然而Rocchio是將相關文件字頻扣除不相關文件字頻,得出字頻高低排序後,用以當作查詢擴張的字詞來源,其演算法效能雖具一定水平,但是否有其它更好過濾不相關字詞的機制,仍然是一個有趣的議題。然而,近年來語意搜索(Semantic search)的概念逐漸形成,也造成許多的搜尋引擎開始以使用者查詢的語意做為搜尋依據,主要考量的是關鍵字上面所涵蓋的語意概念,而非單純使用關鍵字本身。因此,本研究基於現有的自然語言(Natural language processing)相關研究,運用概念萃取演算法LDA,將使用者所提供的相關與非相關的文件資訊,萃取其概念特徵值,得到相關與非相關之主題,接著將相關主題與目標文件集做相似度計算,可以得到文件集的初始排序,之後再利用非相關主題對初始文件排序做調整,便可得到修正後的文件排序,經過實驗證實,本研究所提出之方法可有效提升資訊檢索的準確率。
摘要(英) In the past, the main method in the application of relevance feedback was to aggregate the term frequencies in the feedback documents that the user provided as the feedback characteristics in the vector space model. Rocchio’s query expansion was the most popular one. It reduced the term frequencies of non-relevant documents from the relevant ones first. Then, it ordered the terms by the frequency and kept the top ones as the source for query expansion. Rocchio’s method has been well-performed. Nevertheless, it still is an interesting question: “Is there any better mechanism to filter the non-relevant terms from relevant ones?” Recently, the idea of semantic search is getting more and more popular. Instead of using term-matching to search documents, many on-line search engines promote itself by using the semantic meaning of the user’s query. It is concerned with the semantic meaning that the key words covered. Based on the NLP technique, this research is interested in the application of a concept-retrieval algorithm, LDA, to collect the concept characteristics from relevant documents and non-relevant documents, and use the concept information to adjust document re-ranking.
關鍵字(中) ★ 文字探勘
★ 文件重排序
★ 相關回饋
★ LDA
★ 概念萃取
關鍵字(英)
論文目次 摘要 i
英文摘要 ii
銘謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 前言 1
1-1、研究背景與動機 1
1-2、研究目的 1
1-3、研究範圍與限制 2
二、 相關研究 3
2-1、相關回饋 3
2-2、主題相關回饋 6
2-3、主題學習模型 7
三、 研究方法 11
3-1、 系統架構 11
3-1-1、 正向流程 12
3-1-2、 負向流程 13
3-2、 方法與演算法 14
3-2-1、 相關回饋 14
3-2-2、 主題檔建立 15
3-2-3、 文件與主題檔相似度計算 15
3-2-4、 文件排序 17
3-2-5、 調整排序演算法 17
四、 實驗驗證 19
4-1、 實驗資料 19
4-2、 實驗評估指標 23
4-3、 實驗參數設定 26
4-3-1、 目標演算法 26
4-3-2、 LDA主題萃取演算法 27
4-3-3、 調整排序演算法 28
4-4、 實驗設計與結果 29
4-4-1、 實驗一 29
4-4-2、 實驗二 33
4-4-3、 實驗結果討論 39
五、 結論 41
5-1、 結論與貢獻 41
5-2、 未來研究方向 42
參考文獻 43
參考文獻 參考文獻
[1] G. W. Furnas, T. K. Landauer, L. M. Gomez et al., “The vocabulary problem in human-system communication,” Commun. ACM, vol. 30, no. 11, pp. 964-971, 1987.
[2] J. J. Rocchio, "Relevance feedback in information retrieval," The SMART Retrieval System: Experiments in Automatic Document Processing, G. Salton, ed., pp. 313-323: Prentice-Hall, Englewood Cliffs NJ, 1971.
[3] L. P. Group. "Lemur Project," 02/23, 2012; http://www.lemurproject.org/.
[4] Alias-i. "LingPipe," 02/23, 2012; http://alias-i.com/lingpipe/.
[5] G. Salton, The SMART retrieval system; experiments in automatic document processing, Englewood Cliffs, N.J.,: Prentice-Hall, 1971.
[6] J. Xu, and W. B. Croft, “Query expansion using local and global document analysis,” in Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, Zurich, Switzerland, 1996, pp. 4-11.
[7] M. Hirsch, and D. Aronow, “Suggesting Terms for Query Expansion in a Medical Information Retrieval System,” Proceedings / the ... Annual Symposium on Computer Application [sic] in Medical Care. Symposium on Computer Applications in Medical Care, pp. 965-965, 1995.
[8] J. Bhogal, A. Macfarlane, and P. Smith, “A review of ontology based query expansion,” Information Processing & Management, vol. 43, no. 4, pp. 866-886, 2007.
[9] C. Zilong and L. Yang, "A SVM based method for active relevance feedback," in Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, 2010, pp. 508-513.
[10] W. Jun-yi and Y. Xin-ming, "The study of methods for language model based positive and negative relevance feedback in information retrieval," in Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on, 2010, pp. 870-873.
[11] J. M. Ponte, and W. B. Croft, “A language modeling approach to information retrieval,” in Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, Melbourne, Australia, 1998, pp. 275-281.
[12] X.-G. Wang and Y. Li, "Web Personalization Method Based on Relevance Feedback on Keyword Space," in Services Science, Management and Engineering, 2009. SSME ′09. IITA International Conference on, 2009, pp. 34-37.
[13] Z. Bing, D. YaJun, L. HaiMing, and W. YuTing, "Query Expansion Based on Topics," in Fuzzy Systems and Knowledge Discovery, 2008. FSKD ′08. Fifth International Conference on, 2008, pp. 610-614.
[14] Z. Ye, J. X. Huang, and H. Lin, “Finding a good query-related topic for boosting pseudo-relevance feedback,” Journal of the American Society for Information Science and Technology, vol. 62, no. 4, pp. 748-760, 2011.
[15] S. Deerwester, S. T. Dumais, G. W. Furnas et al., “Indexing by latent semantic analysis,” Journal of the American Society for Information Science, vol. 41, no. 6, pp. 391-407, 1990.
[16] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, United States, 1999, pp. 50-57.
[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.
[18] G. Salton, and M. E. Lesk, “Computer Evaluation of Indexing and Text Processing,” J. ACM, vol. 15, no. 1, pp. 8-36, 1968.
[19] G. Salton, and C. Buckley, "Improving retrieval performance by relevance feedback," Readings in information retrieval, J. Karen Sparck and W. Peter, eds., pp. 355-364: Morgan Kaufmann Publishers Inc., 1997.

[20] Jia-Xiong Zeng, “The utilization of the semantic analysis technique in the application of relevance feedback”, National Central University, master′s degree,2012.
[21] T. L. Griffiths, and M. Steyvers, “Finding scientific topics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5228-5235, Apr 6, 2004
指導教授 周世傑(Shih-Chieh Chou) 審核日期 2016-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明