博碩士論文 103426023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.227.240.143
姓名 趙潁湞(Ying-Jhen Jhao)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以交易時間間隔為基礎之關聯規則分析
(Association Rules Mining with Transaction Time-interval)
相關論文
★ 二階段作業研究模式於立體化設施規劃應用之探討–以半導體製造廠X及Y公司為例★ 推行TPM活動以改善設備總合效率並提昇 企業競爭力...以U公司桃園工廠為例
★ 資訊系統整合業者行銷通路策略之研究★ 以決策樹法歸納關鍵製程暨以群集法識別關鍵路徑
★ 關鍵績效指標(KPI)之建立與推行 - 在造紙業★ 應用實驗計劃法- 提昇IC載板錫球斷面品質最佳化之研究
★ 如何從歷史鑽孔Cp值導出新設計規則進而達到兼顧品質與降低生產成本目標★ 產品資料管理系統建立及導入-以半導體IC封裝廠C公司為例
★ 企業由設計代工轉型為自有品牌之營運管理★ 運用六標準差步驟與FMEA於塑膠射出成型之冷料改善研究(以S公司為例)
★ 台灣地區輪胎產業經營績效之研究★ 以方法時間衡量法訂定OLED面板蒸鍍有機材料更換作業之時間標準
★ 利用六標準差管理提升生產效率-以A公司塗料充填流程改善為例★ 依流程相似度對目標群組做群集分析- 以航空發動機維修廠之自修工件為例
★ 設計鏈績效衡量指標建立 —以電動巴士產業A公司為例★ 應用資料探勘尋找影響太陽能模組製程良率之因子研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-12以後開放)
摘要(中) 關聯規則在許多研究中被廣泛的應用與討論,其目的在於從大量數據中挖掘出有價值的數據項之間的相關關係。關聯規則可應用在醫學診斷、生物科技、市場分析、商業決策等。最常被應用於企業的交易資料庫中,用以分析商品之間的關聯性。傳統的關聯規則僅能表達項目之間的相關性,但無法表達購買的時間間隔與購買行為之間的相關性。現今網路購物已成為現代人普遍的購物方式之一,購物的下單時間及購買品項都會被記錄於交易資料庫,若利用傳統的關聯規則分析,無法得知顧客間隔多久消費一次以及下次購買品項為何,便無法適時給予廣告或是促銷活動,刺激消費者購買力以增加利潤。
本文提出加入顧客交易時間間隔以探討消費間隔時間及顧客消費行為之相關性,在此呈現的關聯規則,可以得知商品被購買的順序以及消費的時間間隔長度,其中亦考慮到顧客交易時間間隔太長,將導致規則不被感興趣,因此在生成規則的過程中,加入交易時間間隔長度的限制。加入時間間隔的關聯規則帶來的資訊可以更加了解顧客的消費習慣,如:間隔多久消費一次?下次購買的物品為何?依照發現的關聯規則,在對的時間發送廣告給不同的消費者,刺激顧客的購買力,進而增進顧客的忠誠度,客源將逐漸擴大以提高利潤。此研究將挖掘出交易時間間隔影響交易品項所產生具時間意義的關聯規則。
摘要(英) Association rules mining are widely used in many studies and applications and the aim is to find out the valuable relationships among two itemsets in large database. Association rules can apply in medical diagnostics, biotechnology, market analysis, business decision-making. It commonly be used in business transactions database to analysis the correlations between the items. Traditional association rules can only show the relationships between items but cannot present the correlation among the transaction time-interval and purchase behavior. Nowadays, online shopping has become one of modern popular way to shop that the shopping order time and items purchased will be recorded in the transaction database. Using traditional association rules mining that we cannot know how long the customer will come back to buy and what items they will buy, so we cannot give advertising or promotion in the right time to stimulate consumer purchasing power to increase profits.
In this study, we consider the transaction time-interval in ARM to discuss the correlation between transaction time-interval and customer behavior. Here, the new rules can know the order of items were purchased and the transaction time-interval length which also take into account the interval is too long to lead the rules become not interested. Therefore, in the process of generating the rules will give a restriction to limit the time-interval length. ARM with time-interval can bring more information to understand the purchasing behavior of customer. For example, how often to go shopping? What will be purchased next time? According to the rules with that we can send different advertisement to different customer at right time to stimulate consumer purchasing power and increase the customer loyalty. We will find out the significance rules with time-interval.
關鍵字(中) ★ 關聯規則
★ 含時間屬性之關聯規則
★ 時間性交易資料庫
關鍵字(英) ★ Association Rule Mining
★ Temporal ARM
★ Temporal transaction database
論文目次 摘要 I
Abstract II
Contents III
List of Tables IV
List of Figure V
Chapter 1 Introduction 1
1-1 Background and motivation 1
1-2 Research Objectives 3
1-3 Research Methodology 3
Chapter 2 Literature Review 5
2-1 Association Rules Mining Method 7
2-2 Temporal Association Rules Mining Method 9
2-3 Time-interval Types 10
Chapter 3 Methodology 15
Chapter 4 Numerical Example 21
Chapter 5 Conclusion and Future Research 39
References 42
參考文獻 References
1. Ahn, K.-I. (2012). Effective product assignment based on association rule mining in retail. Expert Systems with Applications, 39(16), 12551-12556.
2. Ale, J. M. & Rossi, G.H. (2000). An Approach to Discovering Temporal Association Rules. ACM.
3. Agrawal, R. & Srikant, R. (1995). Mining Generalized Association Rules. Department of Computer Science, University of Wisconsin.
4. Agrawal, R., Imielinski, T. & Swami, A. (1993). Mining association rules between sets of items in large databases. ACM.
5. Chang, J. H. (2011). Mining weighted sequential patterns in a sequence database with a time-interval weight. Knowledge-Based Systems, 24(1), 1-9.
6. Chen, Y. (2003). Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications, 25(3), 343-354.
7. Hu, Y.-H., Huang, T. C.-K., Yang, H.-R., & Chen, Y.-L. (2009). On mining multi-time-interval sequential patterns. Data & Knowledge Engineering, 68(10), 1112-1127.
8. Lan, G.-C., Hong, T.-P., Tseng, V. S., & Wang, S.-L. (2014). Applying the maximum utility measure in high utility sequential pattern mining. Expert Systems with Applications, 41(11), 5071-5081.
9. Lee, D., Park, S.-H., & Moon, S. (2013). Utility-based association rule mining: A marketing solution for cross-selling. Expert Systems with Applications, 40(7), 2715-2725.
10. Lin, C.-W., & Hong, T.-P. (2011). Temporal data mining with up-to-date pattern trees. Expert Systems with Applications, 38(12), 15143-15150.
11. Lan, G.-C., Hong, T.-P., & Tseng, V. S. (2011). Discovery of high utility itemsets from on-shelf time periods of products. Expert Systems with Applications, 38(5), 5851-5857.
12. Lee, Y. J., Lee, J. W., Chai, D. J., Hwang, B. H., & Ryu, K. H. (2009). Mining temporal interval relational rules from temporal data. Journal of Systems and Software, 82(1), 155-167.
13. Li, D. & Deogun, J., S. (2005). Discovering Partial Periodic Sequential Association Rules with Time Lag in Multiple Sequences for Prediction. Department of Computer Science and Engineering, University of Nebraska-Lincoln, 332-341.
14. Li, Y., Ning, P., Wang, X. S. & Jajodia, S. (2003). Discovering Calendar-based Temporal Association Rules. Center for Secure Information Systems, George Mason University.
15. Lee, Y. J., Lee, J. W., Chai, D. J., Hwang, B. H., & Ryu, K. H. (2002). Discovering Temporal Relation Rules Mining from Interval Data. Springer-Verlag Berlin Heidelberg, 57-66.
16. Railean, I., Lenca, P., Moga, S., & Borda, M. (2013). Closeness Preference – A new interestingness measure for sequential rules mining. Knowledge-Based Systems, 44, 48-56.
17. Tsai, P. S. M., & Chen, C.-M. (2004). Mining interesting association rules from customer databases and transaction databases. Information Systems, 29(8), 685-696.
18. Tansel, A. U. & Imberman, S.P. (1998), Discovery of Association Rules in Temporal Databases. Department of Computer Engineering and Information Science, Bilkent University.
19. Winarko, E., & Roddick, J. F. (2007). ARMADA – An algorithm for discovering richer relative temporal association rules from interval-based data. Data & Knowledge Engineering, 63(1), 76-90.
20. Xiao, Y., Tian, Y., & Zhao, Q. (2014). Optimizing frequent time-window selection for association rules mining in a temporal database using a variable neighbourhood search. Computers & Operations Research, 52, 241-250.
21. Yiyong, R. Zhang and I. Kaku (2011), A new framework of mining association rules with time-windows on real-time transaction database. International Journal of Innovative Computing, Information and Control, 7, 3239–3253.
指導教授 曾富祥(Fu-Shiang Tseng) 審核日期 2016-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明