博碩士論文 103430010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.232.125.29
姓名 林立中(Li-Chung Lin)  查詢紙本館藏   畢業系所 會計研究所
論文名稱 以8十事業模式框架分析商業智慧之應用對經營決策與財務績效之影響-8十決策模擬競賽冠軍隊與亞軍隊之比較
(Using the 8-Cross Business Model Framework to Analyze the Impact of Business Intelligence on Business Decision and Financial Performance - A Comparison of the Champion and the Runner-Up of an 8-Cross Business Model and Decision Simulation Game)
相關論文
★ 大陸台商中小企業價值網絡分析與策略選擇---以C公司為例★ 內部控制與盈餘組成份子評價
★ 分析師預測與會計異常現象★ 家族企業與盈餘管理
★ 工作經驗與團隊溝通時間對於商業模擬遊戲學習成效之影響-以ShelviDream為例★ 在2008年金融海嘯及台灣觀光旅遊政策開放下國際觀光旅館之因應對策-以晶華酒店為例
★ 連接器產業導入IFRS之因應對策-以宏致電子為例★ 主機板產業導入IFRS 之因應對策-以映泰公司為例
★ 我國企業導入IFRS的執行成效與政府政策目標之比較-以個案公司為例★ 商業模式數位模擬系統開發與經驗傳承之研究 -以「2013 ABC決策模擬系統專題」為例
★ 商業模式數位模擬系統開發與經驗傳承之研究 -以「2013 Inception 決策模擬系統專題」為例★ 成功事業模式和失敗事業模式之比較-以「2015事業模式與決策模擬競賽」研究所參賽學生為例
★ 成功事業模式和失敗事業模式之比較 -以「2015事業模式與決策模擬競賽」 大學部參賽學生為例★ 成功事業模式和失敗事業模式之比較 -以「2015事業模式與決策模擬競賽」EMBA參賽學生為例
★ 以8十事業模式架構分析日月光收購矽品之綜合效益★ 以8十事業模式架構分析台積電前進中國的策略佈局
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著商業智慧的廣泛使用,商業智慧為企業帶來的效益也被廣泛討論,然而不同的商業智慧設計與使用者的心態都有可能使商業智慧的應用對決策執行與經營績效產生不同的影響。雖然實務上雖然可以以財務數據分析商業智慧帶來的效益,但受限於決策資料的記載,我們無法得知經理人執行決策的內容,而無法了解商業智慧的使用者對決策過程與經營績效的影響。
本研究利用國立中央大學ERP會計碩士在職專班「事業模式創新」課程採用「8十事業模式與決策模擬競賽」所產生的決策資料,比較冠軍組與亞軍組經營團隊之決策行對經營績效之影響。另外透過對參賽者訪談與問卷調查,比較兩組的策略思考對決策執行以及經營成效的差異。
本研究結果發現:(1)在策略規劃面產品組合的多元性冠軍組高於亞軍組。(2)在策略執行面冠軍組對於產品成本、管理及行銷費用與收入之間的比例與趨勢的掌握更加精準。(3)問卷結果也顯示冠軍組商業智慧設計在資料分析與結果展現的完整性優於亞軍組,較能輔助其進行需要尋求規律及趨勢的理性決策。因此,本研究推論商業智慧的應用有助於決策規劃與執行,進而創造相對優異的經營績效。
摘要(英)
With the widespread uses of business intelligence (BI), the contribution of BI for the benefits of the enterprise have been widely discussed, but different designs of BI and users’ mindset are likely to cause the BI to have different impact on decision making and the resulting performance. The financial performances have been used to represent the contribution benefits of BI, but the lack of data of decision making by the manager inhibits the analyses of the impact of using BI upon the managers’ decision-making process and the financial performance.
This study uses the decision-making data generated by the "8-Cross Business Model and Decision-Making Simulation Game" in the course of "Business Model Innovation" offered by the National Central University′s ERP Accounting Master program. This study compares the differences of operating performance resulted from decision executions. In addition, based on the interviews and questionnaires with the participants of both teams, this study attempts to reveal the relationships among the strategic thinking, decision executions and operating performance.
This results of this study are as follow. (1) The champion’s product portfolio is more diversified than the runner-up. (2) The champion’s variances between actual financial perforce and the predicted financial performance are smaller than the runner-up. (3)The results of the questionnaire also show that the data analyses and presentation of the champion’s BI design is more complete than runner-up, which enables the champion to obtain information through the BI system and make rational decisions of seeking the rules and trends. Therefore, we conclude that the application of BI may help decision-making and execution, and thus create relatively good operating performance.
關鍵字(中) ★ 商業智慧
★ 8十事業模式
★ 決策模擬競賽
★ 理性決策
關鍵字(英)
論文目次
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
一、 緒論 1
1-1 研究背景 1
1-2 研究動機 1
1-2-1 財務報表資訊的限制 1
1-2-2 商業智慧之設計與效益 1
1-3 研究目的 2
二、 文獻回顧 4
2-1 商業智慧設計與效益 4
2-1-1 商業智慧設計 4
2-1-2 商業智慧效益 5
2-2 決策制定 7
2-2-1 高階經理人的決策挑戰 7
2-2-2 決策的盲點與資訊價值 8
三、 研究設計 10
3-1 事業模式與決策模擬系統競賽 10
3-1-1 競賽說明 10
3-1-2 競賽評分標準 11
3-2 樣本選取與分析資料來源 11
3-2-1 樣本選取 11
3-2-2 分析資料來源 12
3-3 分析方法 12
3-3-1 決策分析基礎 12
3-3-2 問券研究 17
四、 競賽決策與商業智慧分析 20
4-1 初賽隊伍分析 20
4-1-1 初賽第一年決策與現金流分析 20
4-1-2 初賽第二年決策與現金流分析 31
4-2 複賽隊伍分析 42
4-2-1 複賽第一年決策與現金流分析 42
4-2-2 複賽第二年決策與現金流分析 53
4-3 問券結果分析 64
五、 結論 67
5-1 研究結論 67
5-1-1 冠軍組與亞軍組經營決策與財務績效 67
5-1-2 冠軍組與亞軍組商業智慧設計 67
5-2 研究限制與建議 68
參考文獻 69
參考文獻
中文部分
[1] 尹其言,「以競爭智慧觀點支援企業高階主管決策之研究」,國立政治大學,博士論文,2010年。
[2] 許恩得、吳顯忠、王存國,「商業智慧系統導入與公司營運績效」,電子商務學報,第13卷,第4期,895-918頁,2011年。
[3] 鄭漢鐔,《 8十事業模式︰企業診斷與對策的基本框架》,中華8十事業模式學會,2017年。
英文部分
[1] Berry, M., & Linoff, G. (1999). Mastering data mining: The art and science of customer relationship management. John Wiley & Sons, Inc..
[2] Brown, J. (2001), “No quick ROI from business intelligence: DMR Canada,” from http://www.itbusiness.ca/it/client/en/CDN/News.asp?id=164, 2001.
[3] Brynjolfsson, E., & Hitt, L. M. (1998). Beyond the productivity paradox. Communications of the ACM, 41(8), 49-55.
[4] Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM Sigmod record, 26(1), 65-74.
[5] Eckerson, W. (2003). Smart companies in the 21st century: The secrets of creating successful business intelligence solutions. TDWI Report Series, 7.
[6] Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57.
[7] Gates, B. (1999), “Business @ the speed of thought,” Business Strategy Review, 10(2), 11-18.
[8] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
[9] Inmon, W.H. (1996), Building the Data Warehouses, New York: John Wiley & Sons.
[10] Isik, O., Jones, M. C., & Sidorova, A. (2011). Business intelligence (BI) success and the role of BI capabilities. Intelligent systems in accounting, finance and management, 18(4), 161-176.
[11] Kleindorfer, P. R., Kunreuther, H., & Schoemaker, P. J. (1993). Decision sciences: An integrative perspective. Cambridge University Press.
[12] Loshin, D. (2012). Business intelligence: the savvy manager′s guide. Newnes.
[13] Pareek, D. (2006). Business Intelligence for telecommunications. CRC Press.
[14] Pirttimäki, V., Lönnqvist, A., & Karjaluoto, A. (2006). Measurement of business intelligence in a Finnish telecommunications company. The Electronic Journal of Knowledge Management, 4(1), 83-90.
[15] Ramakrishnan, T., Jones, M. C., & Sidorova, A. (2012). Factors influencing business intelligence (BI) data collection strategies: An empirical investigation. Decision Support Systems, 52(2), 486-496.
[16] Simon, H. A. (1987). Making management decisions: The role of intuition and emotion. The Academy of Management Executive (1987-1989), 57-64.
[17] Soll, J. B., Milkman, K. L., & Payne, J. W. (2015). Outsmart your own biases. Harvard Business Review, 93(5), 64-71.
[18] Strassmann, P. A. (1990). The business value of computers: an executive′s guide. Information Economics Press.
[19] Vassiliadis, P., & Sellis, T. (1999). A survey of logical models for OLAP databases. ACM Sigmod Record, 28(4), 64-69.
[20] Viaene, S., De Hertogh, S., Lutin, L., Maandag, A., Den Hengst, S., & Doeleman, R. (2009). Intelligence‐led policing at the Amsterdam‐Amstelland Police Department: operationalized business intelligence with an enterprise ambition. Intelligent systems in accounting, finance and management, 16(4), 279-292.
[21] Watson, H. J., & Wixom, B. H. (2007). Enterprise agility and mature BI capabilities. Business Intelligence Journal, 12(3), 4.
[22] Wells, D. (2003). Ten best practices in business intelligence and data warehousing. Renton, WA: The Data Warehouse Institute.
指導教授 鄭漢鐔 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明