博碩士論文 103453025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.237.66.86
姓名 賴鋒(Feng Lai)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 關聯規則應用於中藥藥材罐擺放順序之研究
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 應用卷積式神經網路建立肝臟超音波影像輔助判別模型★ 基於卷積神經網路之身分識別系統
★ 能源管理系統電能補值方法誤差率比較分析★ 企業員工情感分析與管理系統之研發
★ 資料淨化於類別不平衡問題: 機器學習觀點★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究個案醫院的中藥局,其藥品品項多達700種,而在調劑過程中花費最多時間的步驟,是從藥櫃中尋找處方箋中的藥品。為了讓藥劑師有規則可循,須要有邏輯性的安排藥局中中藥藥罐的擺放位置。本研究試圖改善目前個案醫院中藥局調劑給藥流程,能夠針對藥劑師在「尋找藥罐調配藥品」這個最需要耗時費神的重要步驟加以改善。因此,結合資料探勘技術中的關聯規則法來對於大型中醫院數以萬計的處方箋進行探勘,找出處方箋中各種藥品與藥品之間的相關性,將常常搭配在同一處方箋的藥品罐集中擺放,這樣或許可以大量減少藥劑師尋找藥罐的時間,並進而減少因為疲勞或體力不繼發生不當調劑與作業疏失的機率。研究中進行三個主要部份的實驗為:依照「全年度」發掘關聯規則的結果與分析、依照「季節」發掘關聯規則的結果與分析、依照「醫師」發掘關聯規則的結果與分析。
最後本研究提供了一套流程與方法,讓中醫與藥劑師可以利用資料探勘技術來輔助處理中藥調劑。也試圖用更廣泛的面向與角度去探勘個案醫院的處方箋資料,再藉由專科中醫師來驗證分析探勘出來的處方箋藥品間的關聯規則,給予個案醫院建議來改善現況的不足。
摘要(英) The case study is a traditional Chinese medicine hospital phamarcy with items up to 700 species, and step pharmacist spend the most time in the drug administrating process is to find the prescription drugs from the medicine cabinet. In order to have pharmacists follow the rules, it needs to have a logical arrangements for gallipot in the pharmacy. This study attempts to improve the current medicine administration process in the case hospital. It may be better to the step of “Looking for formulations gallipot” which is the most important and time-consuming step for pharmacists. For a large Hospital, therefore, making use of data mining techniques with the association rule method for thousands of prescriptions identifies correlations of various prescription drugs. Cetralizing the frequent-prescriped gallipot in the neighborhood may be able to significantly reduce the time for pharmacist finding and getting gallipots. Furthermore, this could also reduce the opportunity of carelessness and improper actions due to pharmacist’s fatigue.
There are three studies conducted, which are based on extracting the association rules for “full year, “season”, and “idividual doctors” Finally, this study provides a process and method and those let pharmacists are able to make use of data mining techniques supporting the traditional Chinese medicine administrating process. Also tries to use a broader perspective to mine prescription in the case hospital, and then validate the association rules between prescription drugs by the doctors of traditional chinese medicine.
關鍵字(中) ★ 資料探勘
★ 關聯規則
★ 中醫
關鍵字(英) ★ Data Mining
★ Association Rules
★ FP growth
★ Chinese traditional medicine
論文目次 目錄
摘要 ....................................................................................................................................... i
Abstract ...................................................................................................................................... ii
誌謝 ..................................................................................................................................... iii
目錄 ..................................................................................................................................... iv
圖目錄 ...................................................................................................................................... v
表目錄 ..................................................................................................................................... vi
緒論 ............................................................................................................................. 1
研究背景 ................................................................................................................... 1
研究動機 ................................................................................................................... 2
研究目的 ................................................................................................................... 4
研究對象與範圍 ....................................................................................................... 5
文獻探討 ..................................................................................................................... 7
2.1 資料探勘技術 ............................................................................................................. 7
2.2 關聯規則(Association Rule) .................................................................................... 10
2.3 相關文獻回顧 ........................................................................................................... 21
研究方法 ................................................................................................................... 26
3.1 研究流程 ................................................................................................................... 26
3.2 個案資料集介紹 ....................................................................................................... 27
3.3 資料前置處理 .......................................................................................................... 28
3.4 資料分析工具與方法 .............................................................................................. 31
研究結果與分析 ....................................................................................................... 35
4.1 依照全年度發掘關聯規則的結果與分析 ............................................................. 35
4.2 依照季節發掘關聯規則的結果與分析 ................................................................. 41
4.3 依照醫師發掘關聯規則的結果與分析 ................................................................. 44
結論與建議 ............................................................................................................... 47
5.1 研究結論與建議 ..................................................................................................... 47
5.2 研究貢獻 ................................................................................................................. 48
5.3 研究限制 ................................................................................................................... 49
5.4 未來研究方向 ........................................................................................................... 49
參考文獻 ................................................................................................................................. 51
附錄1 .................................................................................................................................... 54
參考文獻 參考文獻
【中文文獻】
1. 錢逸昕、駱泰傑、張光勛、譚大緯(2009),RFID 結合燈號裝置應用於中藥調劑系統之研究 東南科技大學
2. 醫策會年報(2014),財團法人醫院評鑑暨醫療品質策進會
3. 台灣中藥典第二版(2013),行政院衛生署
4. 林建發(2000),〝颱風降雨量之統計迴歸預測〞,中央大學統計研究所碩士論文
5. 黃世承(2002),〝資料探勘在颱風降雨量與風速預測上之應用〞,中央大學統計研究所碩士論文
6. 周雅君(2007),以資料探勘為基礎建構偏光板品質異常診斷系統,元智大學工業工程與管理學系碩士論文
7. 黃勝崇(2001), 資料探勘應用於醫療院所輔助病患看診指引之研究,南華大學資訊管理研究所
8. 周歆凱(2004),利用『資料探勘技術』探討急診高資源耗用者之特性,國立台灣大學醫療機構管理研究所
9. 盧瑜芬(2006),使用三種資料探勘演算法-類神經網路、邏輯斯迴歸及決策樹-預測乳癌患者存活情形之效能比較
10. 李姿儀(2000),醫院門診資料探勘—以虎尾若瑟醫院為例,南華大學資訊管理研究所
11. 李虹、蔡之華(2003),關聯規則在醫療數據分析中的應用,中國地質大學計算科學與技術系
12. 魏于盛(2006),資料探勘應用於輔助中醫門診病歷登錄與病症辨別,台科大資管系
13. 洪冠群(2004),〝多重最小支持度關聯規則探勘演算法之醫療檢驗應用:以血液透析病患之住院預測為例〞東華大學資訊工程系
14. 葉忠、吳恒睿(2002),中醫院揀藥作業儲位規劃之研究,開南管理學院






【英文文獻】
1. Yang, T.C. and Lai, H., 2006, Comparison of product bundling strategies on different online shopping behaviors, Electronic Commerce Research and Applications
2. Pang-Ning Tan and Michael Steinbach and Vipin Kumar, 2005, Introduction to Data Mining
3. Han and Kamber, 2006, Data Mining: Concepts and Techniques
4. Rakesh Agrawal and Ramakrishnan Srikant, 1994, Fast Algorithms for Mining Association Rules, IBM Almaden Research Center
5. Jiawei Han, 2004, Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, 8, 53–87, 2004
6. S. Y. Wur and Y.H. Leu (1999) An Effective Boolean Algorithm for Mining Association Rules in Large Database, Proc. Of 6th Int. Conf. on Advanced System for Advanced Applicastions
7. Tsay, Y.J. and Chang-Chien, 2004, Y.W. “An efficient cluster and decomposition algorithm for mining association rules,"Information Sciences (160)
8. Kim, J. K., Park, H. W., 1999, Statistical textural features for detection of microcalcifications in digitized mammograms., IEEE Trans. Med. Imag., vol. 18, no. 3
9. Durand, N. & Cr emilleux, B. & Henry-Amar, M., 2001, “Discovering Associations in Clinical Data: Application to Search for Prognostic Factors in Hodgkin′s Disease."In Proceedings of the 8th Conference on Artifical Intelligence in Medecine in Europe, AIME 01, volume 2101 of LNAI, pages 50-54, Cascais, Portugal, July 2001.
10. Ji Zhang, Wynne Hsu, Mong Li Lee, 2001, Image Mining: Issue, Frameowrks and Technique
11. Daniel Hunyadi, 2011, Performance comparison of Apriori and FP-Growth algorithmsin generating association rules
12. Jen-Yang Tang, Li-Yeh Chuang, Edward Hsi, Yu-Da Lin, Cheng-Hong Yang, and Hsueh-Wei Chang, 2013, Identifying the Association Rules between Clinicopathologic Factors and Higher Survival Performance in Operation-Centric Oral Cancer Patients Using the Apriori Algorithm, BioMed Research International Volume 2013 (2013)
指導教授 蔡志豐(Chih-Fong Tsai) 審核日期 2016-6-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明