博碩士論文 103521018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.191.132.250
姓名 王章翰(Chang-Han Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 實現波動數位濾波器架構下之類比仿真器的非線性電晶體模型
(Nonlinear Transistor Model for WDF-Based Analog Emulators)
相關論文
★ 用於類比電路仿真之波動數位濾波器架構的自動建構方法★ 使用波動數位濾波器與非線性MOS模型的類比電路模擬平台
★ 以節點保留方式進行壓降分析中電源網路模型化簡的方法★ 以引導式二階權重提取改進辨認二階臨界函數之 研究
★ 用於類比電路仿真器的 波動數位濾波器架構之定點數實現方法★ 以基本類比電路架構為基礎的佈局自動化 工具
★ 可保留設計風格及繞線行為之類比佈局遷移技術★ 自動辨識混合訊號電路中數位區塊之方法
★ 運用於記憶體內運算的SRAM功率模型之研究★ 考量可繞度及淺溝槽隔離效應之類比佈局擺置微調方法
★ 一個適用於量化深度神經網路且可調整精確度的處理單元設計: 一種階層式的設計方法★ 一個有效的邊緣智慧運算加速器設計: 一種適用於深度可分卷積的可重組式架構
★ 實現類比電路仿真的波動數位濾波器架構生成與模擬★ 用於類比電路仿真器的波動數位濾波器之硬體最佳化方法
★ 自動辨識混合訊號電路中構成區塊及RLC元件之方法★ 以波動數位濾波器實現類比電路仿真器所需的FPGA表格縮減技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今的超大型積體電路設計裡通常同時包含了類比電路與數位電路,隨著
製程的進步,混合訊號(Analog/mixed-signal)晶片設計的驗證流程越來越複雜並
且消耗大量時間與精力,這也成為了上市時間的主要瓶頸,因此如何找到可靠的
對於混合訊號晶片的模擬(Simulation)與仿真(Emulation)變得十分的重要,然而,
在現有的技術裡並不存在一個完美的類比電路仿真器,為了要發展出可靠的仿真
流程,我們在這篇論文裡利用了波動數位的轉換規則,它主要是利用入射波與反
射波來描述電路元件的特性,將連續訊號的類比電路快速且準確的轉換成離散訊
號的等效數位電路。
根據波動數位濾波器(WDF, Wave Digital Filter)的理論,幾乎每個類比元件都
可以ㄧ對ㄧ對映成數位元件,然而,對於非線性元件並沒有一個好的對映模型,
因此在這篇論文裡,我們提出了一個新的以波動數位濾波器為基礎的非線性
MOS 元件模型,這個模型在多個電晶體的狀況下可以確保電路的收斂,並且使
用了查表法讓模擬的結果與HSPICE 一樣具有相當高的準確度,與小訊號模型
(SSM, Small-signal Model)相比之下,新的非線性模型可以有較少的硬體消耗並且
具有較高的準確度,除此之外,本篇論文建構了軟體驗證環境,可以用於將SPICE
netlist 轉換成WDF netlist 後的驗證,還可以評估所建立的非線性模型的準確度,
並且可以減少發展FPGA 仿真器階段時的除錯時間。
摘要(英) Modern VLSI designs usually contain digital and analog circuits. Due to the
advanced process technologies, the verification of analog/mixed-signal (AMS)
integrated circuits (ICs) becomes increasingly expensive and complicated and
becomes the major bottleneck for Time-to-Market concern. As a result, it is quiet
important to find a reliable simulation and emulation method for AMS circuits.
However, a feasible emulation solution doesn’t exist for AMS circuits. In order to
develop a reliable emulating process, we utilize wave digital principle (WDF), which
is a fast and accurate method to convert analog circuit into digital circuit, as the
foundation of this work. This method illustrates the characteristics of circuits by
incident and reflected waves; in other words, it can transform an analog circuit
containing continuous signal into equivalent digital circuit containing discrete signal.
Almost every analog component can be mapped into digital component
one-by-one by using WDF theory; however, there is no practical solution for
nonlinear components mapping yet. In this thesis, we propose a new WDF-based
MOSFET component which can ensure convergence caused by multiple transistors
and have a high accuracy just as HSPICE by using lookup table approach.
Furthermore, it also has a higher precision and a lower hardware cost as compared
with the small-signal model (SSM). A software verification environment is also
developed to verify the accuracy of WDF netlist transformed from SPICE netlist. It
plays an important role in the development of WDF emulator by evaluating the
accuracy of a new nonlinear model; moreover, it will reduce hardware debug time in
the development of FPGA emulator.
關鍵字(中) ★ 波動數位濾波器
★ 非線性電晶體模型
★ 類比仿真器
關鍵字(英) ★ wave digital filter
★ Nonlinear Transistor Model
★ Analog Emulator
論文目次 摘要................................................................................................................................. i
Abstract .......................................................................................................................... ii
致謝............................................................................................................................... iii
Contents ........................................................................................................................ iv
List of Figures ................................................................................................................ v
List of Tables ................................................................................................................ vii
Chapter 1 Introduction ................................................................................................ 1
1-1 Motivation .................................................................................................. 1
1-2 Previous Analog Emulators........................................................................ 3
1-2-1 FPAAs ............................................................................................ 3
1-2-2 PANDA .......................................................................................... 5
1-2-3 SPICE2 ........................................................................................... 6
1-3 Thesis Organization ................................................................................... 7
Chapter 2 Background ................................................................................................ 9
2-1 Concepts of the Wave Digital Filter ........................................................... 9
2-1-1 Digital Filter Modeling .................................................................. 9
2-1-2 Wave Digital Filter Modeling ...................................................... 11
2-1-3 Adaptor ........................................................................................ 14
2-1-4 Nonlinear Component .................................................................. 17
2-2 Wave Digital Filter Emulation Flow ........................................................ 19
2-3 Linear Equivalent Circuit for MOSFET .................................................. 20
2-4 Problem Definition................................................................................... 21
Chapter 3 New Proposed Models ............................................................................. 22
3-1 Nonlinear MOS Model ............................................................................ 22
3-2 Lookup Table for Nonlinear MOS Model ................................................ 25
3-3 Ideal Transformer ..................................................................................... 28
3-4 WDF Software Verification Platform ...................................................... 31
Chapter 4 Experimental Results ............................................................................... 34
4-1 Cascade Common Source Amplifier ........................................................ 34
4-2 Differential Amplifier .............................................................................. 37
4-2-1 One Stage Differential Amplifier ................................................. 37
4-2-2 Two Stage Differential Amplifier ................................................ 40
4-3 One Stage Instrumentation Amplifier ...................................................... 44
Chapter 5 Conclusions and Future Works ................................................................ 47
v
References .................................................................................................................... 48
參考文獻 References
[1] A. V. Karthik and J. Roychowdhury, "ABCD-L: Approximating continuous
linear systems using Boolean models," in Proceedings of the 50th Annual Design
Automation Conference, pp. 1–9, May 2013.
[2] R. A. Rutenbar, "Design automation for analog: The next generation of tool
challenges," Proceedings of IEEE/ACM International Conference, pp. 458–460,
Nov. 2009.
[3] A. Fettweis, "Wave digital filters: Theory and practice," Proceedings of the IEEE,
vol. 74, no. 2, pp. 270–327, Feb. 1986.
[4] H. Kutuk and S.-M. Kang, "A field-programmable analog array (FPAA) using
switched-capacitor techniques," Proceedings of IEEE International Symposium,
vol. 4, pp. 4–44, May 2015.
[5] E. K. F. Lee and W. L. Hui, "A novel switched-capacitor based
field-programmable analog array architecture," Proceedings of Analog Integrated
Circuits and Signal Processing, vol. 17, no. 1-2, pp. 35–50, Jan. 1998.
[6] E. K. F. Lee and P. G. Gulak, "A transconductor-based field-programmable
analog array," Proceedings of IEEE International Solid-State Circuits Conference,
pp. 198–199, Feb. 1995.
[7] Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, "A field
programmable analog array for CMOS continuous-time OTA-C filter
applications," Proceedings of IEEE Journal of Solid-State Circuits, vol. 37, no. 2,
pp. 125–136, Feb. 2002.
[8] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, "Large-scale
field-programmable analog arrays for analog signal processing," Proceedings of
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp.
2298–2307, Nov. 2005.
[9] N. Suda, N. Suda, J. Suh, N. Hakim, Y. Cao, and B. Bakkaloglu, "A 65 nm
programmable aNalog device array (PANDA) for analog circuit Emulation,"
Proceedings of IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
63, no. 2, pp. 181–190, Feb. 2016.
[10] J. Su, N. Suda, C. Xu, N. Hakim, Y. Cao, and B. Bakkaloglu, "Programmable
49
aNalog device array (PANDA): A methodology for transistor-level analog
Emulation," Proceedings of IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 6, pp. 1369–1380, Jun. 2013.
[11] R. Zheng, J. Suh, C. Xu, N. Hakim, B. Bakkaloglu, and Y. Cao, "Programmable
analog device array (PANDA): A platform for transistor-level analog
reconfigurability," Proceedings of IEEE Design Automation Conference, pp.
322–327, Jun. 2009.
[12] N. Kapre and A. DeHon, "SPICE2: spatial processors Interconnected for
concurrent execution for accelerating the SPICE circuit simulator using an
FPGA," Proceedings of IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 1, pp. 22–9, Jan. 2012.
[13] K. Meerkotter and R. Scholz, "Digital simulation of nonlinear circuits by wave
digital filter principles," Proceedings of IEEE International Symposium on
Circuits and Systems, pp. 1–723, May 2011.
[14] A. S. Oppenheim and O. & Schafer, Discrete time signal processing. India:
Prentice-Hall of India Pvt., 2009.
[15] J. G. Proakis and D. G. Manolakis, Digital signal processing: Principles,
Algorithms, and applications. India: Pearson Education India, 2007.
[16] K. Meerkotter and R. Scholz, "Digital simulation of nonlinear circuits by wave
digital filter principles," Proceedings of IEEE International Symposium Circuits
and System, pp. 1–723, May 2011.
[17] G. De Sanctis and A. Sarti, "Virtual analog modeling in the wave-digital
domain," Proceedings of IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 4, pp. 715–727, May 2010.
[18] A. Sarti and G. De Poli, "Toward nonlinear wave digital filters," Proceedings of
IEEE Transactions on Signal Processing, vol. 47, no. 6, pp. 1654–1668, Jun.
1999.
[19] B. J. Sheu, D. L. Scharfetter, . P. Ko, and . M. Jeng, "BSIM: Berkeley
short-channel IGFET model for MOS transistors," Proceedings of IEEE Journal
of Solid-State Circuits, vol. 22, no. 4, pp. 558–566, Aug. 1987.
[20] T. Shima, T. Sugawara, S. Moriyama, and H. Yamada, "Three-Dimensional table
look-up MOSFET model for precise circuit simulation," Proceedings of 7th
European Solid State Circuits Conference, pp. 34–37, Sept. 1981.
50
[21] S. A. Dyer and J. S. Dyer, "Cubic-spline interpolation. 1," Proceedings of IEEE
Instrumentation & Measurement Magazine, vol. 4, no. 1, pp. 44–46, Mar. 2001.
[22] Y.-S. Han, "A simulation platform for analog circuits using wave digital filters
and Nonlinear MOS model," National Central University, Taiwan, 2015.
[23] B.-H. Tsai, "Automatic Construction of Wave Digital Filter Structure for Analog
Circuit Emulation," National Central University, Taiwan, 2015.
[24] Wei Wu, Yen-Lung Chen, Yue Ma, Chien-Nan Jimmy Liu, Jing-Yang Jou,
Sudhakar Pamarti, Lei He, "Wave digital filter based analog circuit Emulation on
FPGA," in Proceedings of IEEE International Symposium on Circuits and
Systems, 2016.
指導教授 周景揚(Jing-Yang Jou) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明