博碩士論文 103521035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:100.24.122.117
姓名 湯順偉(Shun-Wei Tang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵緩衝層磊晶跟場效電晶體直流和動態特性關聯之研究
(DC and Transient Performance of AlGaN/GaN HEMTs with Different Buffer Layers)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在低阻值矽 (111) 基板上進行氮化鋁鎵/氮化鎵高電子遷移率場效電晶體的製作,並探討不同緩衝層結構之元件直流與動態/暫態電性。實驗之磊晶試片於MOCVD腔體中採用不同的長晶條件成長緩衝層與氮化鎵層,研究不同緩衝層與氮化鎵層磊晶品質對製作成元件後之崩潰電壓與電流崩塌的效應。
本實驗在製作電晶體前,先對磊晶試片做一系列的材料分析與探討,其中藉由光激發致螢光頻譜 (PL) 儀探討兩種長晶條件下所成長的緩衝層之YL/BE ratio,也利用二次離子質譜儀解析磊晶結構的摻雜離子縱深對應,並有X射線繞射儀量測磊晶。
低YL/BE ratio、高XRD半高寬值與低碳摻雜濃度的磊晶所製作之元件擁有較高水平崩潰電壓、高垂直崩潰電壓及高三端元件崩潰電壓。接續為了降低元件漏電流,而製作金氧半場效電晶體並探討其直流電性。
本實驗針對蕭特基閘極場效電晶體與金氧半場效電晶體進行暫態量測分析,實驗結果指出structure B磊晶 (低YL/BE ratio、高XRD半高寬值與低碳摻雜濃度的磊晶) 的元件於高偏壓與高電場作用下,電流崩塌效應均明顯降低。此外觀察個別元件在施予不同偏壓後的回復狀況,並再搭配改變溫度的方式以探討個別對應的陷阱活化能階位置。
摘要(英) This study investigates the DC and transient performance of AlGaN/GaN high electron mobility transistors with different buffer layers, which were deposited on the low-resistivity Si (111) substrate. Based on the distinct buffer layers and i-GaN layer, we investigated the device breakdown characteristics and current collapse phenomenan. The main targets of this thesis is to analyze the device performance that correlated to the quality of buffer layers.
For the evaluation of the epitaxial layer’s quality, photoluminescence(PL) spectroscopy was used to study the YL/BE ratio that corresponds to different buffer layers, followed by the secondary ion mass spectroscopy and XRD measurement.
  The epitaxial layers with lower YL/BE ratio, higher XRD FWHM, and lower Carbon concentration can result in high horizontal and vertical material breakdown and device breakdown voltages. In order to suppress the gate leakage current, the devices with MIS structure has been fabricated and the gate leakage characteristic were improved.
  In this study, the transient measurements to analyze the performance of schottky and MIS HEMTs have been carried out. According to the experiments, the results indicate the epilayers with low YL/BE ratio, higher XRD FWHM, and lower Carbon concentration have significiently suppressed the current collapse effect when the devices were operated at high stress and high electric field.
關鍵字(中) ★ 氮化鎵
★ 光激發致螢光頻譜
★ 二次離子質譜儀
★ 電流崩塌
關鍵字(英) ★ GaN
★ Photoluminescence
★ SIMS
★ Current collapse
論文目次 中文摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵高電子遷移率場效電晶體之發展 3
1.3 氮化鎵黃光頻譜與能帶邊緣放射比值之相關發展 6
1.4 論文之研究動機與目的 10
1.5 論文架構 10
第二章 氮化鋁鎵/氮化鎵場效電晶體於矽基板之磊晶結構 12
2.1 前言 12
2.2 氮化鋁鎵/氮化鎵於矽基板之磊晶結構設計與材料特性分析 12
2.2.1 霍爾量測與分析 19
2.2.2光激發致螢光頻譜量測之磊晶分析 20
2.2.3 緩衝層X射線繞射儀量測磊晶之分析 31
2.2.4 二次離子質譜儀量測分析 34
2.3 結論 38
第三章 氮化鋁鎵/氮化鎵閘極場效電晶體與金氧半場效電晶體之特性分析與比較 39
3.1 前言 39
3.2 氮化鋁鎵/氮化鎵場效電晶體與金氧半場效電晶體之製作流程 39
3.3 氮化鋁鎵/氮化鎵場效電晶體之直流特性分析 45
3.3.1 氮化鋁鎵/氮化鎵蕭特基閘極場效電晶體之直流特性分析 45
3.3.2 氮化鋁鎵/氮化鎵金氧半場效電晶體之直流特性分析 62
3.4 結論 72
第四章 氮化鋁鎵/氮化鎵場效電晶體之電流崩塌效應量測分析 74
4.1 前言 74
4.2 電流崩塌效應之探討 74
4.3 氮化鋁鎵/氮化鎵場效電晶體之脈衝與變溫暫態量測之分析 78
4.3.1 氮化鋁鎵/氮化鎵蕭特基閘極場效電晶體與金氧半場效電晶體之動態電阻量測 84
4.3.2 氮化鋁鎵/氮化鎵蕭特基閘極場效電晶體之變溫動態電阻量測分析 92
4.4 結論 103
第五章 結論與未來展望 105
參考文獻 107
參考文獻 [1] Guerra and J. Zhang, “New Design Proposals for High-Power Renewable Energy Applications” Power electronic Europe, issue 4, June 2010.
[2] L. F. Eastman and U. K. Mishra, “The Toughest Transistor Yet GaN Transistors,” IEEE Spectro., vol. 3, May 2002.
[3] S. Mizuno, Y. ohno, S. Kishimoto, K. Maezawa and T. Mizutani, “Large Gate Leakage Current in AlGaN/GaN High Electron Mobility Transistors,” Jpn. J. Appl. Phys. vol. 41, pp. 5125–5126, Aug. 2002.
[4] Y. Dawei, L. Hai, C. Dongsheng, C. Dunjun, Z. Rong, and Z. Youdou, “On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., 97, 153503, Oct. 2010.
[5] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications,” IEEE Trans. Electron Devices., vol. 53, no. 2, Feb. 2006
[6] Ye Wang, Maojun Wang, Bing Xie, Cheng P. Wen, Jinyan Wang, Yilong Hao, Wengang Wu, Kevin J. Chen, Bo Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, Nov. 2013
[7] Kevin J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, and J. N. Wang, “Physics of fluorine plasma ion implantation for GaN normally off HEMT technology,” IEEE IEDM, 2011, pp. 19.4.1-19.4.4, Dec. 2011.
[8] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, “Gate Injection Transistor (GIT)-A Normally-Off AlGaN GaN Power Transistor Using Conductivity Modulation,” IEEE Trans. Electron Devices., vol. 54, no. 12, Dec. 2007.
[9] Liang-Yu Su, Finella Lee, and Jian Jang Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Trans. Electron Devices., vol. 61, no. 2, Feb. 2014.
[10] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett., vol. 77, no. 9, Aug. 2000.
[11] A. Fontsere, A. Perez-Tomas, P. Godignon, J. Millan, H. De Vleeschouwer, J. M. Parsey, P. Moens, “Wafer scale and reliability investigation of thin HfO2 AlGaN GaN MIS-HEMTs,” Microelectronics Reliability., 52, 2220–2223, Jul. 2012.
[12] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics,” IEEE Electron Device Lett., vol. 31, no. 3, Mar. 2010.
[13] X. Hu, A. Koudymov, G. Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, and R. Gaska, “Si3N4 AlGaN GaN–metal–insulator–semiconductor heterostructure field effect transistors,” Appl. Phys. Lett., vol. 79, no. 17, Oct. 2001.
[14] T. Hsieh, E. Chang, Y. Song, Y. Lin, H. Wang, S. Liu, S. Salahuddin, and C. Hu, “Gate Recessed Quasi-Normally OFF Al2O3/AlGaN/GaN MIS-HEMT With Low Threshold Voltage Hysteresis Using PEALD Interfacial Passivation Layer,” IEEE Electron Device Lett., vol. 35, no. 7, Jul. 2014.
[15] W. Choi, O. Seok, H. Ryu, H. Cha, and K. Seo, “High-Voltage and Low-Leakage-Current Gate Recessed Normally-Off GaN MIS-HEMTs With Dual Gate Insulator Employing PEALD-SiNx/RF-Sputtered-HfO2,” IEEE Electron Device Lett., vol. 35, no. 2, Feb. 2014.
[16] C. Zhang, Y. Hao, and Q. Feng, “Effective surface passivation of AlGaN/GaN heterostructures by using PH3 plasma treatment and HfO2 dielectric,”Phys. Status Solidi, no.3-4, 934-937, Jan. 2012.
[17] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, M. Yamaguchi, “Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs with Optimized Field-Plate Structure,” IEEE Trans. Electron Devices., vol. 54, no. 8, Aug. 2007.
[18] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, “Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs,” IEEE Electron Device Lett., vol. 31, no. 7, Jul. 2010.
[19] Kevin J. Chen, S. Yang, Z. Tang, S. Huang, Y. Lu, Q. Jiang, S. Liu, C. Liu, and B. Li, “Surface nitridation for improved dielectric/III-nitride interfaces in GaN MIS-HEMTs,” Phys. Status Solidi., vol.212, no. 5, 1059-1065, Dec. 2014.
[20] M. F. Romero, A. Jiménez, J. Miguel-Sánchez, A. F. Braña, F. González-Posada, R.
Cuerdo, F. Calle, and E. Muñoz, “Effects of N2 Plasma Pretreatment on the SiN
Passivation of AlGaN GaN HEMT,” IEEE Electron Device Lett., vol. 29, no. 3, Mar.
2008.
[21] O. Hilt, E. Bahat-Treidel, E. Cho, S. Singwald and J. Würfl, “Impact of Buffer Composition on the Dynamic On-State Resistance of High Voltage AlGaN/GaN HFETs,” 24th International Symposium on Power Semiconductor Devices and ICs, Jun. 2012.
[22] H. Fujimoto, W. Saito, A. Yoshioka, T. Nitta, Y. Kakiuchi and Y. Saito, “Wafer Quality
Target for Current-Collapse-Free GaN HEMTs in High Voltage Applications,” CS Mantech Technical digest 5.2, Chicago, Illinois, April. 2008.
[23] M. Ťapajna, U. K. Mishra, and M. Kuball, “Importance of impurity diffusion for early stage degradation in AlGaN GaN high electron mobility transistors upon electrical stress,” ,” Appl. Phys. Lett., vol. 97, 023503, Jul. 2010.
[24] Y. Ando, I. Takenaka, H. Takahashi, and C. Sasaoka, “Correlation Between Epitaxial Layer Quality and Drain Current Stablility of GaN/AlGaN/GaN Heterostructure Field-Effect Transistors,” IEEE Trans. Electron Devices., vol. 62, no. 5, May. 2015.
[25] M. Huber, M. Silvestri, L. Knuuttila, G. Pozzovivo, A. Andreev, A. Kadashchuk, A. Bonanni, and A. Lundskog, “Impact of residual carbon impurities and gallium vacancies on trapping effects in AlGaN GaN metal insulator semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 107, 032106, Jul. 2015.
[26] M. J. Uren, J. Möreke, and M. Kuball, “Buffer Design to Minimize Current Collapse in GaN AlGaN HFETs,” IEEE Trans. Electron Devices., vol. 59, no. 12, Dec. 2012.
[27] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices., vol. 48, no. 3, Mar. 2001.
[28] P. Javorka, Doctors Dissertation, Berichter Universit, Feb. 2004.
[29] E. F. Schubert, Light Emitting diode. Cambridge Uni Press.
[30] T. Goudon, V. Miljanovi, and C. Schmeiser, “On The Shockley-Read-Hall Model : Generation-Recombination in Semiconductors,” SIAM J. Appl. Math., vol. 67, no. 4, pp.1183-1201, May. 2007.
[31] X. Zhou, Z. Feng, Y. Wang, G. Gu, X. Song, and S. Cai, “Transient Simulation Of AlGaN/GaN HEMT Including Trapping and Thermal Effects,” ICSICT, 2014
[32] J. H. Edgar, S. Strite, I. Akasaki, H. Amano, and C. Wetzel, “Properties, Processing and Applications of Gallium Nitride and Related Semiconductors,” Aug. 1998.
[33] D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow Luminescence of Gallium Nitride Generated by Carbon Defect Complexes,”Phys. Rev. Lett., 110, 087404, Feb. 2013.
[34] D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Hydrogen-carbon complexes and the blue luminescence band in GaN,” J. Appl. Phys., vol. 119, 035702, Jan. 2016.
[35] Z. Vashaei, E. Cicek, C. Bayram, R. McClintock, and M. Razeghi, “GaN avalanche photodiodes grown on m-plane freestanding GaN substrate,” Appl. Phys. Lett., vol. 96, no. 201908, May. 2010.
[36] M. A. Reshchikov, D. O. Demchenko, A. Usikov, H. Helava and Yu. Makarov, “Carbon defects as sources of the green and yellow luminescence bands in undoped GaN,” Phys, Rev. B 90, 235203, Dec. 2014.
[37] S. Lee, M. Belkhir, X. Zhu, and Y. Lee, “Electronic structures of GaN edge dislocations,” Phys, Rev. B, vol. 61, no. 23, Jun. 2000.
[38] M. A. Reshchikov, H. Morkoç, “Luminescence properties of defects in GaN,” Journal of Applied Physics., vol. 97, 061301, Mar. 2005.
[39] Materials Science and Engineering - An Introduction, W.D. Callister, J. Wiley, 7th Edition, William D. Callister, Jr. 2006.
[40] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, no. 5, Jan. 1996.
[41] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett., vol. 81, no. 1, Jul. 2002.
[42] E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Würfl, and G. Tränkle, “AlGaN/GaN/GaN:C Back-Barrier HFETs With Breakdown Voltage of Over 1 kV and Low Ron  A,” IEEE Trans. Electron Devices., vol. 57, no. 11, Nov. 2010.
[43] L. Wang, F. M. Mohammed, I. Adesida, “Differences in the reaction kinetics and contact formation mechanisms of annealed Ti/Al/Mo/Au Ohmic contacts on n-GaN and AlGaN/GaN epilayers,” J. Appl. Phys., vol.101, 013702, Jan. 2007.
[44] O. Ambacher,a) J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN GaN heterostructues,” J. Appl. Phys., vol. 85, no. 6, Mar. 1999.
[45] S. L. Selvaraj, T. Suzue, and T. Egawa, “Breakdown Enhancement of AlGaN GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers,” IEEE Electron Device Lett., vol. 30, no. 6, Jun. 2009.
[46] J. Joh, J. A. del Alamo, U. Chowdhury, T. Chou, H. Tserng, and J. L. Jimenez, “Measurement of Channel Temperature in GaN High Elctron Mobility Transistors,” IEEE Trans. Electron Devices., vol. 56, no. 12, Dec. 2009.
[47] X. Wang, S. Huang, Y. Zheng, K. Wei, X. Chen, H. Zhang, and X. Liu, “Effect of GaN Channel Layer Thickness on DC and RF Performance of GaN HEMTs With Composite AlGaN GaN Buffer,” IEEE Trans. Electron Devices., vol. 61, no. 5, May. 2014.
[48] Z. Bit, Y. Hao, H. Liu, L. Liu, and Q. Feng, “Characteristics Analysis of Gate Dielectrics in AlGaN GaN HEMT,” EDSSC, IEEE International Conference, Dec. 2009.
[49] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance-Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface,” J. J. Appl. Phys., vol. 50, 021001, Feb. 2011.
[50] T. Wu, D. Marcon,B. Bakeroot, B. D. Jaeger, H. C. Lin, J. Franco, S. Stoffels, M. Van Hove, R. Roelofs, G. Groeseneken, and S. Decoutere, “Correlation of interface states border traps and threshold voltage shift on AlGaN GaN metal insulator semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 107, 093507, Sep. 2015.
[51] J. Son, V. Chobpattana, B. M. McSkimming, and S. Stemmer, “Fixed charge in high-k GaN metal-oxide-semiconductor capacitor structures,” Appl. Phys. Lett., vol. 101, 102905, Sep. 2012.
[52] D. Bisi, M. Meneghini, C. Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, E. Zanoni, “Deep-Level Characterization in GaN HEMTs-Part I Advantages and limitations of Drain Current Transient Measurements,” IEEE Trans. Electron Devices., vol. 60, no. 10, Oct. 2013.
[53] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High Breakdown Voltage AlGaN-GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Lett., vol. 25, no. 4, Apr. 2004.
[54] J. Würfl, O. Hilt, E. Bahat-Treidel, R. Zhytnytska, P. Kotara, F. Brunner, O. Krueger, M. Weyers, “Techniques towards GaN power transistors with improved high voltage dynamic switching properties,” IEEE International Electron Devices Meeting, pp. 6.1.1-6.1.4, Dec. 2013.
[55] Donghyun Jin and Jesús A. del Alamo, “Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, June. 2012.
[56] Z. Zhang, K. Fu, X. Deng, X. Zhang, Y. Fan, S. Sun, L. Song, Z. Xing, W. Huang, G. Yu, Y. Cai, and B. Zhang, “Normally Off AlGaN/GaN MIS-High-Electron Mobility Transistors Fabricated by Using Low Pressure Chemical Vapor Deposition Si3N4 Gate Dielectric and Standard Fluorine Ion Implantation,” IEEE Electron Device Lett., vol. 36, no. 11, Nov. 2015.
[57] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, P. Moens, “Temperature-Dependent Dynamic RON in GaN-based MISHEMTs : Role of Surface Traps and Buffer Leakage,” IEEE Trans. Electron Devices., vol. 62, no. 3, Mar. 2015.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明