博碩士論文 103521040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.204.176.189
姓名 李翼丞(Yi-Cheng Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
(GeSn PIN Photodetector on Silicon Substrate by Rapid-Melting-Growth Technique)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究
★ P型金屬氧化物薄膜的製備應用於軟性電子★ 金屬氧化物製備應用於軟性電子元件
★ 超導材料釔鋇銅氧化物熱電特性量測分析★ 鎂矽錫合金熱電特性研究及應用
★ 矽基熱電模組開發及特性研究★ P型金屬氧化物與硫化物之研究
★ 物聯網之熱感測器應用★ P型金屬氧化物與硫化物合金薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著光纖通訊系統迅速發展,矽鍺整合技術逐漸應用於電子元件與光電元件
,利用鍺的高電子及電洞遷移率與窄能帶的優點,很適合做為近紅外光偵測器。而在許多參考文獻中提到當鍺材料加入少量的錫元素,隨著錫濃度的改變,可以使鍺間接能隙材料轉換為鍺錫合金直接能隙材料,並證實在長波長下有更好的吸收係數,且提高其光響應率。但鍺錫合金整合於矽基板上存在著困難,因鍺錫合金與矽之間存在4.2%以上的晶格不匹配且鍺與錫之間有著低固態溶解度,所以一般會將鍺錫合金直接磊晶於矽基板上,但此方法需使用昂貴的超高真空機台,且磊晶成長慢、所需時間長,付出的製程成本相對來的大。
本論文以快速熱熔融磊晶成長法作為基本架構,並改良傳統的快速熱熔融磊晶成長法,將省略晶種視窗區,採用兩段式快速熱退火,期望有效得到良好的高品質鍺錫合金,再以此磊晶成長法製作垂直式PIN型鍺錫合金光偵測器,而此磊晶方法較一般高真空機台更簡單快速且可降低成本。最後使用1310nm與1550nm波段的雷射光進行光暗電流的直流量測分析,並利用SEM、TEM及Raman光譜進行材料分析。
摘要(英) With the rapid development of optical fiber communication systems, the integration of germanium with silicon has attracted much attention for both electronic and photonic devices, taking the advantage of narrow band gap as well as high electron and hole mobility. On the other hand, germanium tin(GeSn) alloys was expected to improve the photo-response of a near-infrared photodetector. However the growth of single-crystalline GeSn alloys on silicon is very challenging because of the low equilibrium solubility (<1%) of Sn in Ge and the large lattice mismatch(greater than 4.2%)between silicon and GeSn alloys. Therefore, traditional GeSn alloys grown on silicon rely on ultra-high-vacuum chambers, which are expensive and time-consuming.
In this article, we use rapid-melting-growth technique to grow GeSn alloys on silicon substrate, expect to get high-quality GeSn alloys. The as-grown GeSn alloys were employed for PIN photodetector devices. At the last, physical characteristics, including the I-V behavior, photoresponsibility, and materials quality were investigated by electrical analyzer, SEM, TEM and Raman spectroscopy.
關鍵字(中) ★ 快速熱熔融磊晶成長法 關鍵字(英)
論文目次 中文摘要............................................i
英文摘要...........................................ii
致謝...............................................iii
目錄...............................................iv
第一章 簡介........................................1
1-1論文架構.........................................1
1-2光纖通訊基本架構..................................1
1-3光偵測器的原理....................................3
1-4矽鍺光偵測器的優勢..............................7
第二章 使用快速熱熔融磊晶成長法製作鍺錫合金光偵測器之設計原理.......8
2-1本論文研究動機及目的...................................8
2-2錫合金探討............................................9
2-3快速熱熔融磊晶成長法.................................12
第三章 使用快速熱熔融磊晶成長法製作鍺錫合金光偵測器之實驗設計與製作流程.............................................13
3-1 前言..............................................13
3-2實驗設計...........................................16
3-3元件製程流程與細節..................................17
第四章 快速熱熔融磊晶成長法製作鍺錫合金之實驗分析.........27
4-1鍺錫合金光偵測器量測分析.............................27
4-2 鍺錫合金光偵測器材料分析............................31
4-2-1鍺錫薄膜拉曼光譜分析...............................31
4-2-2 鍺錫薄膜不同波段之吸收率分析.......................32
4-2-3 鍺錫合金光偵測器元件SEM與TEM分析...................33
4-3 30奈米鍺錫薄膜材料分析..............................36
第五章 快速熱熔融磊晶成長法製作鍺錫合金之實驗結論..........39
參考文獻...............................................40
參考文獻 [1]何滿龍,“通信電學”,全華出版,2008.

[2]王心平,“利用射頻技術實現混合乙太數位及射頻訊號之單波長光纖通訊系統”,國立中央大學通訊研究所論文,1995.

[3] S.O.Kasap, “Optoelectronics and Photonics, Principles and Practices”, Prentice
Hall, New Jersey,2001.

[4] Djafar K, Mynbaev and Lowell L. Scheiner , “Fiber-Optic Communications
Technology”, 2003.

[5] Slawomir Piatek, “Hamamatsu Corporation & New Jersey Institute of
Technology”,2014.

[6]周晉賢,“Silicon/Germanium Heterojunction Avalanche Photodetector by Rapid-Melting-Growth Technique”,國立中央大學電機研究所論文,2015.

[7] J. Kouvetakis, J. Menendez, and A.V.G. Chizmeshya, “Tin-based group IV
semiconductors: new platforms for opto- and microelectronics on silicon” , Ann. Rev.
of Mater. Res. 36, 497 ,2006.

[8] G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Physical
Review Letters, Vo. 79, 10, 1937 ,1997.

[9] J. D. Sau, and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy
system”, Physical Review B 75, 045208,2007.

[10] J. Kouvetakis, J. Menendez, and A.V.G. Chizmeshya, “Tin-based group IV
semiconductors: new platforms for opto- and microelectronics on silicon,” Ann. Rev.
of Mater. Res. 36, 497 ,2006.

[11] A. Moontragoon, Z. Ikonic and P. Harrison, “Band structure calculations of Si–
Ge–Sn alloys: achieving direct band gap materials,” Journal Semiconductor Science
and Technology, 22, 7, 2007.
[12] Gang He and Harry A. Atwater, “Synthesis of epitaxial SnxGe1-x alloy films by
ion-assisted molecular beam epitaxy,” Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, Volume 106,
Issues 1-4, 126 ,1995.

[13] S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai,
“Growth of highly strain-relaxed Ge1-xSnx/virtual Ge by a Sn precipitation controlled
compositionally step-graded method,” Applied Physics Letters 92, 231916 ,2008.

[14] Seyed Amir Ghetmiri, Wei Du, Joe Margetis, Aboozar Mosleh, Larry Cousar,Benjamin R. Conley, Lucas Domulevicz, Amjad Nazzal, Greg Sun, Richard A. Soref,John Tolle, Baohua Li, Hameed A. Naseem, and Shui-Qing Yu “Direct-bandgap GeSn grown on silicon with 2230nm photoluminescence” Applied
Physics Letters,105,151109,2014.

[15] W. Du, S. A. Ghetmiri, A. Mosleh, B. R. Conley, L. Huang, A. Nazzal, R.A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S.-Q. Yu, Applied
Physics Letters 105, 051104 ,2014.

[16] W. Du, S. A. Ghetmiri, A. Mosleh, B. Conley, L. Huang, A. Nazzal, R. A.Soref, G. Sun, J. Tolle, H. A. Naseem, and S.-Q. Yu, paper presented at the CLEO:
QELS_Fundamental Science, 2014.

[17] Yaocheng Liu, Michael D. Deal, and James D. Plummer,“High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates” , Appl. Phys.
Lett. 84, 2563 , 2004.

[18] M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn” , Applied
Physics Letters 101, 141110, 2012.

[19] Kaiheng Ye, Wogong Zhang, Michael Oehme, Marc Schmid, Martin Gollhofer, Konrad Kostecki, Daniel Widmann, Erich Kasper and Jorg Schulze, “Extraction of GeSn Absorption Coefficients from Photodetector Response” , IEEE,7th International Silicon-Germanium Technology and Device Meeting, p137-p138, 2014.

[20] Michael Oehme, Konrad Kostecki, Kaiheng Ye, Stefan Bechler, Kai Ulbricht, Marc Schmid, Mathias Kaschel, Martin Gollhofer, Roman Körner, Wogong Zhang,
Erich Kasper, and Jörg Schulze, “GeSn-on-Si normal incidence photodetectorswith bandwidths more than 40 GHz” , OSA, OPTICS EXPRESS, vol. 22, No.1,p839-p846, 2014.

[21] Yu-Hsiang Peng, H. H. Cheng, Vladimir I. Mashanov, and Guo-En Chang,“GeSn p-i-n waveguide photodetectors on silicon substrates” , Applied Physics Letters 105,
231109, 2014.

[22] 工業技術研究院材料與化工研究所,羅聖全,“電子顯微鏡介紹-SEM”,小微米大世界.

[23] 林明為、羅聖全、朱仁佑、蔡枝松、林麗娟、葉吉田,“雙粒子束聚焦式離子束(DB-FIB)技術在材料檢驗分析上之應用與發展”,工業材料雜誌,252期,Dec,2007.

[24] 工業技術研究院材料與化工研究所,羅聖全,“電子顯微鏡介紹-TEM”,小微米大世界.

[25] Michael Oehme , Konrad Kostecki, Marc Schmid, Filipe Oliveira, Erich Kasper, Jörg Schulze, “Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn” , Thin Solid Films 557, p169-p172, 2014.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2016-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明