博碩士論文 103521049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.204.56.97
姓名 黃柏年(Bo-Nian Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究
(Si-based nanomaterials for thermoelectric applications by spark plasma sintering)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ P型金屬氧化物薄膜的製備應用於軟性電子★ 金屬氧化物製備應用於軟性電子元件
★ 超導材料釔鋇銅氧化物熱電特性量測分析★ 鎂矽錫合金熱電特性研究及應用
★ 矽基熱電模組開發及特性研究★ P型金屬氧化物與硫化物之研究
★ 物聯網之熱感測器應用★ P型金屬氧化物與硫化物合金薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 熱電效應是一種藉由材料本質特性,熱能跟電能之間可直接轉換的現象,在環保考量層面的價值很高。熱電效應的應用層面廣泛,廢熱的回收再利用發電,亦可以和太陽能發電系統相互輔助,或是在外太空探索中使用,甚至應用於行動裝置的能源回收。因此科學家近年致力於開發綠色能源,提升ZT優值。 本研究主要探討以輕摻雜矽晶片蝕刻出的矽奈米線為基底,進行N/P type摻雜,以及鎂熱反應形成的矽化鎂,並混合二氧化矽奈米粉末與鈷奈米粉末,利用火花電漿燒結法燒結成塊材。量測範圍為室溫至470K,討論不同混合材料對熱電結果之影響。
摘要(英) Thermoelectric effect can be employed for waste heat recycling, power
generation, chip cooling, or space exploration. However, the cost for materials
with the high figure of merit (ZT) at room temperature is still over the price.
This study focused on the doped silicon-based thermoelectric materials,
including Si and magnesium silicide formed by magnesium thermal reaction.
Mixing of the silicon dioxide and cobalt nano-powder before sintering were
conducted to study its effects on ZT from room temperature to 470K.
關鍵字(中) ★ ZT優值
★ 矽奈米線
★ 火花電漿燒結法
★ 熱電
關鍵字(英) ★ ZT
★ silicon nanowires
★ spark plasma sintering
★ thermoelectric
論文目次 摘要 ............................ i
Abstract ........................ ii
致謝 .............................. iii
目錄 ............................ iv
圖目錄 .......................... vi
第一章、導論 ....................... 1
1-1 前言 .......................... 1
1-2 熱電效應 ...................... 2
1-3 文獻回顧 ...................... 6
1-4 研究動機 ...................... 9
第二章、實驗方法與儀器量測 .................... 10
2-1 金屬輔助化學蝕刻法(Metal-assisted chemical etching, MACE) ........................... 10
2-1-1 一步金屬輔助化學蝕刻法(One-step MACE) .......................... 10
2-1-2 二步金屬輔助化學蝕刻法(Two-step MACE) .......................... 12
2-2 火花電漿燒結法(Spark Plasma Sintering,SPS) ............................... 13
2-3 儀器量測 ......................... 14
2-3-1 電導率量測 ..................... 14
2-3-2 Seebeck係數量測 ................... 19
2-3-3 熱導率量測 ........................ 19
2-3-4 材料性質分析 ........................ 24
2-3-4-1 X光繞射分析(X-ray diffraction,XRD) ................................. 24
2-3-4-2 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) ..............................25
第三章、實驗流程與步驟 ................... 27
3-1 前言 ............................... 27
3-2 實驗流程設計 ....................... 28
3-3 實驗步驟 ........................... 29
3-3-1 製備矽奈米線 ..................... 29
3-3-2 N/P type參雜 .................... 30
3-3-3 鎂高溫熱反應 ..................... 31
3-3-4 收集矽奈米線及粉末混合 ................ 31
3-3-5 塊材燒結成形與研磨 .................... 32
第四章、實驗結果與討論 ...................... 40
4-1 前言 ................................. 40
4-2 SEM觀察分析 ............................. 41
4-2-1 蝕刻矽奈米線 .......................... 43
4-2-2 燒結塊材 ............................ 43
4-3 塊材之XRD分析 ......................... 46
4-4 塊材之電導率 ........................... 49
4-5 塊材之Seebeck係數 ....................... 50
4-6 塊材之功率因子 .......................... 50
4-7 塊材之熱導率 ............................ 51
4-8 塊材之ZT值 .............................. 52
第五章、結論 ................................ 60
參考文獻 .................................. 61
參考文獻 [1] Lon E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with
Thermoelectric Systems”, Science 321, 1457-1461 (2008).
[2] Y. G. Gurevich and G. N. Logvinov, “Physics of Thermoelectric Cooling”, Semicond.
Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch
Limited, London (1957).
[4] G. Grosso, G. P. Parravicini, Solid State Physics, Academic Press, Amsterdam (2000).
[5] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures”, Science 303,
777-778 (2004).
[6] Francis J. DiSalvo, “Thermoelectric Cooling and Power Generation”, Science 285,
703-706 (1999).
[7] M. Zebarjadi, K. Esfarjania, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Perspectives
on thermoelectrics: from fundamentals to device applications”, Energy Environ. Sci. 5,
5147 (2012).
[8] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yang, D. Wang, A. Muto, D.
Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren,
“ High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride
Bulk Alloys”, Science 320, 634-638 (2008).
[9] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y.
Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “Enhanced Thermoelectric
Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys”, Nano Lett.
8, 4670-4674 (2008).
[10] Wang, X. W., et al. "Enhanced thermoelectric figure of merit in nanostructured n-type
silicon germanium bulk alloy." Applied Physics Letters 93,193121(2008).
[11] Xu, Ya-dong, Gui-ying Xu, and Chang-chun Ge. "Improvement in thermoelectric
properties of n-type Si 95 Ge 5 alloys by heavy multi-dopants." Scripta
Materialia 58,1070-1073(2008).
[12] Kallel, A. C., G. Roux, and C. L. Martin. "Thermoelectric and mechanical properties of
a hot pressed nanostructured n-type Si 80 Ge 20 alloy." Materials Science and
Engineering A 564,65-70(2013).
[13] Stein, N., et al. "Artificially nanostructured n-type SiGe bulk thermoelectrics through
plasma enhanced growth of alloy nanoparticles from the gas phase."Journal of
materials research 26,1872-1878(2011).
[14] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a
One-Dimension Conductor”, Phys. Rev. B 47, 16631(R) (1993).
[15] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics
of Semiconductor Nanostructures, John Wiley & Sons (2005).
[16] Y. Yu. Peter, Effect of Quantum Confinement on Electrons and Phonons in
Semiconductors, Fundamental of Semiconductors, 469-551, Springer, Berlin,
Heidelberg (2010).
[17] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren,
J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric
Materials”, Advanced Materials 19, 1043-1053 (2007).
[18] Snyder, G. Jeffrey, and Eric S. Toberer. "Complex thermoelectric materials."Nature
materials 7,105-114(2008).
[19] Lee, Joo-Hyoung, Giulia A. Galli, and Jeffrey C. Grossman. "Nanoporous Si as anefficient thermoelectric material." Nano letters 8,750-3754 (2008)..
[20] Han, Hee, Zhipeng Huang, and Woo Lee. "Metal-assisted chemical etching of silicon
and nanotechnology applications." Nano Today 9,271-304(2014).
[21] Peng, Kui-Qing, et al. "Synthesis of large-area silicon nanowire arrays via
self-assembling nanoelectrochemistry." Advanced Materials 14,1164(2002).
[22] Nassiopoulou, Androula Galiouna, Violetta Gianneta, and Charalambos Katsogridakis.
"Si nanowires by a single-step metal-assisted chemical etching process on
lithographically defined areas: formation kinetics." Nanoscale research
letters 6,1(2011).
[23] Bai, Fan, et al. "Template-free fabrication of silicon micropillar/nanowire composite
structure by one-step etching." Nanoscale research letters 7,1(2012).
[24] To, Wai-Keung, et al. "Fabrication of n-type mesoporous silicon nanowires by one-step
etching." Nano letters 11,5252-5258(2011).
[25] Osminkina, Liubov A., et al. "Optical properties of silicon nanowire arrays formed by
metal-assisted chemical etching: evidences for light localization effect." Nanoscale
research letters 7, 1 (2012).
[26] Ouertani, Rachid, et al. "Formation of silicon nanowire packed films from
metallurgical-grade silicon powder using a two-step metal-assisted chemical etching
method." Nanoscale research letters 9, 1 (2014).
[27] Li, Shaoyuan, et al. "Fabrication of p-type porous silicon nanowire with oxidized
silicon substrate through one-step MACE." Journal of Solid State Chemistry
213,242-249(2014).
[28] Li, Shaoyuan, et al. "Fabrication of porous silicon nanowires by MACE method in
HF/H2O2/AgNO3 system at room temperature." Nanoscale research letters 9,1-8(2014).
[29] Qu, Yongquan, et al. "Electrically conductive and optically active porous silicon
nanowires." Nano letters 9, 4539-4543(2009).
[30] Zhang, Ming-Liang, et al. "Preparation of large-area uniform silicon nanowires arrays
through metal-assisted chemical etching." The Journal of Physical Chemistry C 112,
4444-4450(2008).
[31] Zhong, Xing, et al. "Unveiling the formation pathway of single crystalline porous
silicon nanowires." ACS applied materials & interfaces 3, 261-270(2011).
[32] Qi, Yangyang, et al. "A processing window for fabricating heavily doped silicon
nanowires by metal-assisted chemical etching." The Journal of Physical Chemistry
C 117, 25090-25096(2013).
[33] Bathula, Sivaiah, et al. "Microstructural features and mechanical properties of Al
5083/SiC p metal matrix nanocomposites produced by high energy ball milling and
spark plasma sintering." Materials Science and Engineering 545, 97-102(2012).
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2016-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明