博碩士論文 103521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.15.156.140
姓名 尤姿予(Tzu-Yu Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 銻砷化鎵/砷化銦鎵穿隧式場效電晶體 之導通電流研究
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著未來在半導體產業上電晶體元件的微縮發展,穿隧式場效電晶體以能帶穿隧方式產生電流,該電晶體僅需低的操作電壓即可使元件運作,且擁有低的次臨限斜率、極好的開關切換特性、在關閉時低的漏電流與低功率損耗等優點,有別於傳統金氧半場效電晶體其載子以飄移-擴散方式來傳導電流,次臨限斜率會被kT/q所限制。III-V族材料的穿隧式場效電晶體因具有比傳統矽材料還低的能隙寬度,而有較高的穿隧機率,達到高的元件導通電流及更低的操作偏壓,固本論文著重於開發III-V族化合物半導體之穿隧式場效電晶體。
本論文使用了同質結構與兩種不同異質結構之III-V族p-i-n摻雜材料磊晶,為了達到穿隧機制需有p+重摻雜的源極與n+重摻雜的汲極。同質結構為砷化銦鎵材料之銦的成分比例佔53%,鎵的比例佔47%;而第一種異質結構為銻砷化鎵/砷化銦鎵,此能隙排列擁有較小的有效穿隧能障,使之能產生較大的導通電流,源極為p+型銻砷化鎵;第二種異質結構為在第一種異質結構的p-i接面處加入6-nm 砷化銦鎵材料形成具口袋式異質結構穿隧式場效電晶體,此能隙排列能使導通電流更加提升。
藉由光學曝光進行微米尺寸穿隧式場效電晶體元件圖形定義,探討不同磊晶材料之導通電流特性。成功製作出具砷化銦鎵口袋式銻砷化鎵/砷化銦鎵之穿隧式場效電晶體元件在汲極長度LD = 2 μm的元件,氧化鋁/氧化鉿EOT為2 nm,閘極電壓VG = 2 V,汲極電壓VD = 0.5 V時,汲極導通電流為11.98 μA/μm。
摘要(英) As transistors are scaled-down in the semiconductor industry, it is important to replace MOSFETs for low power application due to the ability to make device work with a lower supply voltage, without increase in OFF state currents. Unlike the MOSFET which uses thermal carrier injection, the TFET utilizes band-to-band tunneling as a source carrier injection mechanism. Advantages of TFETs include excellent switching characteristics, small operating voltage and low power consumption. Since the TFET has a different source carrier injection mechanism than does the MOSFET, it can achieve sub-60-mV/dec subthreshold slope. III-V material based devices with high ON current have been considered. The high tunneling probability due to the narrow and direct bandgap. Therefore, III-V material based TFETs are studied in this thesis.
There are three different epitaxy structures used in this study, one homo-junction structure and two different hetero-junction structures. In order to achieve the tunneling operation of n-type TFET, a heavily doped In0.53Ga0.47As is dedicated for source, n+- In0.53Ga0.47As is for drain, and undoped In0.53Ga0.47As is for channel in In0.53Ga0.47As homo-junction structure. The first hetero-junction TFET has a p+ GaAs0.51Sb0.49 source with an intrinsic In0.53Ga0.47As channel and a n+ In0.53Ga0.47As drain. The second hetero-junction TFET is similar to the hetero-junction TFET, with the exception that a 6-nm In0.7Ga0.3As “pocket” is grown next to the source to provide a smaller tunneling barrier.
In this study, we use optical lithography and wet etching method to fabricate the micron dimension TFETs. Different epi structures involve in on-stated current were studied for insulators including Al2O3/HfO2 (EOT of 2 nm) by ALD. At room temperature, the characteristics of the hetero-junction TFET with pocket could obtain the maximum on current (Ion) 11.98 μA/μm.
關鍵字(中) ★ 穿隧式場效電晶體
★ 銻砷化鎵/砷化銦鎵
★ 導通電流
關鍵字(英) ★ TFET
★ GaAsSb/InGaAs
★ On-state current
論文目次 摘要 I
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 導論 1
1.1 穿隧式場效電晶體研究發展 1
1.2 研究動機 17
1.3 論文架構 17
第二章 穿隧式場效電晶體介紹 19
2.1 前言 19
2.2 穿隧電流與穿隧理論 19
2.3 穿隧式場效電晶體元件特性的重要參數 22
2.4 穿隧式場效電晶體能帶圖與導通電流關係 23
2.5 結論 29
第三章 砷化銦鎵及銻砷化鎵/砷化銦鎵之穿隧式場效電晶體製程與特性比較 30
3.1 前言 30
3.2 Silvaco模擬砷化銦鎵及銻砷化鎵/砷化銦鎵之穿隧式場效電晶體特性 30
3.3 砷化銦鎵同質磊晶及銻砷化鎵/砷化銦鎵異質磊晶結構 35
3.4 穿隧式場效電晶體製程流程 37
3.5 複合薄膜氧化層之不同磊晶結構穿隧式場效電晶體特性與分析 44
3.5.1 砷化銦鎵同質磊晶之穿隧式場效電晶體特性 45
3.5.2 銻砷化鎵/砷化銦鎵異質磊晶之穿隧式電晶體特性 49
3.5.3 不同磊晶結構之穿隧式場效電晶體特性比較 52
3.6 結論 58
第四章 銻砷化鎵/砷化銦鎵及具砷化銦鎵口袋式銻砷化鎵/砷化銦鎵之穿隧式場效電 晶體製程與特性比較 59
4.1 前言 59
4.2 Silvaco模擬銻砷化鎵/砷化銦鎵及具砷化銦鎵口袋式銻砷化鎵/砷化銦 59
鎵之穿隧式場效電晶體特性比較 59
4.3 具砷化銦鎵口袋式銻砷化鎵/砷化銦鎵異質磊晶結構 63
4.4 複合薄膜氧化層之不同磊晶結構穿隧式場效電晶體特性與分析 64
4.4.1 具砷化銦鎵口袋式銻砷化鎵/砷化銦鎵之穿隧式電晶體特性 65
4.4.2 不同磊晶結構之穿隧式場效電晶體特性比較 68
4.5 脈衝量測 76
4.6 結論 80
第五章 總結與未來展望 83
參考文獻 85
參考文獻 [1] Committee, I.R., "International Technology Roadmap for Semiconductors, " 2013
Edition. Semiconductor Industry Association.
[2] Iwai, H., “Future of Logic Nano CMOS Technology,” IEEE EDS DL, IIT-Bombay,Jan. 2015.
[3] Wang, P.-F., K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, W. Hansch, "Complementary tunneling transistor for low power application."Solid-State Electronics, 48(12): p. 2281-2286. 2004.
[4] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect
transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec” ,IEEE
Electron Device Letters, vol. 28, no. 8, pp. 743-745, August, 2007.
[5] Mookerjea, S. and Datta, S., “Comparative Study of Si, Ge and InAs based Steep SubThreshold Slope Tunnel Transistors for 0.25V Supply Voltage Logic
Applications,” IEEE Device Research Conf., Santa Barbara, CA, Jun. 2008, pp.
47-48.
[6] Mookerjea, S., Mohata,D., Krishnan R., Singh J., Vallet A., Ali A., Mayer T., Narayanan V., Schlom D., Liu A. and Datta S., “Experimental demonstration of 100nm channel length In0.53Ga0.47 As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications,” IEEE Electron Devices Meeting (IEDM), Baltimore, MD, Dec. 2009, pp. 1-3.
[7] Mookerjea, S., Mohata, D., Mayer, T., Narayanan, V. and Datta, S., “Temperature-Dependent I–V Characteristics of a Vertical In0.53Ga0.47As Tunnel FET,” IEEE Electron Device Letters, vol. 31, no. 6, pp. 564-566, Jun. 2010.
[8] Yan Zhu, Mohata, D.K., Datta, S. and Hudait, M.K., “Reliability Studies on High-Temperature Operation of Mixed As/Sb Staggered Gap Tunnel FET Material andDevices,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1, pp. 245-254, Mar. 2014.
[9] Han Zhao, Y. Chen, Y. Wang, F. Zhou, F. Xue, and J. Lee, "Tunneling Field-Effect Transistors With an of 50 and a Subthreshold Swing of 86 mV/dec Using Gate Oxide."Electron Device Letters, 31(12): p. 1392-1394.2010.
[10] Rui Li, Yeqing Lu, Guangle Zhou, Qingmin Liu, Soo Doo Chae, Tim Vasen, Wan Sik Hwang, Qin Zhang and Patrick Fay, “AlGaSb/InAs Tunnel Field-Effect Transistor With On-Current of 78 μA/μm at 0.5 V,” IEEE Electron Device Letters, vol. 33, no. 3, pp. 363-365, Mar. 2012.
[11] Tao Yu, James T., Dimitri A. and Judy L., "In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 Quantum-Well Tunnel-FETs With Tunable Backward Diode Characteristics." Electron Device Letters, 34(12): p. 1503-1505.2013
[12] Ritesh Jhaveri, Venkatagirish Nagavarapu and Jason C. S. Woo, "Effect of Pocket Doping and Annealing Schemes on the Source-Pocket Tunnel Field-Effect Transistor." IEEE Transactions on Electron Devices, vol. 58, no. 1, Jan. 2011
[13] Yasuhiro Utsumi, "Transistor statistics add up Better predictions of electron behavior could reduce the size of computer chips. " Riken Research, Jun. 2016
[14] S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. Canada: John Wiley & Sons, Inc., 2007, ch.8.
[15] D. K. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert, T. Mayer, V. Narayanan, J. M. Fastenau, D. Loubychev, A. K. Liu and S. Datta, "Demonstration of MOSFET-Like On-Current Performance in Arsenide/Antimonide Tunnel FETs with Staggered Hetero-junctions for 300mV Logic Applications." IEEE Electron Devices Meeting (IEDM), Washington, DC, Dec. 2011, pp. 33.5.1 - 33.5.4
[16] D. K. Mohata, R. Bijesh, Y. Zhu, M. K. Hudait, R. Southwick, Z. Chbili, D. Gundlach, J. Suehle, J. M. Fastenau, D. Loubychev, A. K. Liu, T. S. Mayer, V. Narayanan and S. Datta, “Demonstration of improved heteroepitaxy, scaled gate stack and reduced interface states enabling heterojunction tunnel FETs with high drive current and high on-off ratio,” IEEE VLSI Technology (VLSIT), Honolulu, HI, Jun. 2012, pp. 53-54.
[17] Dheeraj Mohata, Bijesh Rajamohanan, Theresa Mayer, Mantu Hudait, Dmitri Lubyshev, Amy W. K. Liu and Suman Datta, “Barrier-Engineered Arsenide–Antimonide Heterojunction Tunnel FETs With Enhanced Drive Current,” IEEE Electron Device Letters, vol. 33, no. 11, pp. 1568-1570, Nov. 2012.
[18] R. Bijesh, H. Liu, H. Madan, D. Mohata, W. Li1 , N. V. Nguyen , D. Gundlach , C.A. Richter , J. Maier, K. Wang, T. Clarke, J. M. Fastenau , D. Loubychev , W. K. Liu , V. Narayanan and S. Datta, “Demonstration of In0.9Ga0.1As/GaAs0.18Sb0.82 Near Broken-gap Tunnel FET with ION=740μA/μm, GM=700μS/μm and Gigahertz Switching Performance at VDS=0.5V,” IEEE Electron Devices Meeting (IEDM), Washington, DC, Dec. 2013, pp. 28.2.1-28.2.4.
[19] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then and R. Chau “Fabrication, Characterization, and Physics of III-V Heterojunction Tunneling Field Effect Transistors (H-TFET) for Steep Sub-Threshold Swing,” IEEE Electron Devices Meeting (IEDM), Washington, DC, Dec. 2011, pp. 33.6.1-33.6.4.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明