博碩士論文 103521078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.210.201.170
姓名 陳仕堯(Shih-Yao Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 採用功率擾動之每安培最大轉矩控制內藏式永磁同步馬達驅動器之研製
(A Power Perturbation Based MTPA Control for IPMSM Drive System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究目的為開發新型每安培最大轉矩控制法應用於內藏式永磁同步馬達驅動系統以改善馬達效率,並藉由加入改良型干擾轉矩觀測器改善在週期性變動負載干擾下的速度響應。新型每安培最大轉矩控制法是基於磁場導向控制法發展,藉由訊號注入的概念將訊號注入至電流角度上造成功率擾動進而提供電流角度讓馬達運行在最佳操作點上。為了讓馬達有良好強健性,加入線上參數調整以及利用最小平方估測法進行即時的馬達參數估測,再利用改良型的干擾轉矩觀測器提供前饋補償控制力。本文所提出的每安培最大轉矩控制法不僅不會受到馬達參數變化的影響,也能夠改善無法在低速或馬達剛啟動時無法運行每安培最大轉矩控制法的困境,也能夠獨立於馬達電壓電流雜訊的影響。此外,藉由結合干擾轉矩觀測器,可改善傳統僅使用比例-積分速度控制器在外部負載擾動時之動態性能。另一方面,本論文亦提出利用改良型Elman類神經網路控制器取代傳統速度控制器,並保有良好的速度響應。最後利用微芯公司所生產之數位訊號處理器實現內藏式永磁同步馬達驅動系統,在測試平台上初步實測並驗證其功能,並由模擬結果及實驗結果中可以驗證在負載轉矩干擾下擁有良好的速度響應。
摘要(英) A novel maximum torque per ampere (MTPA) method based on power perturbation for a field-oriented control (FOC) interior permanent magnet synchronous motor (IPMSM) drive system is proposed in this study. Moreover, to enhance the robustness of the control system, a real-time design scheme for the integral-proportional (IP) controller using recursive least square (RLS) estimator with disturbance torque feedforward control is developed, and the disturbance torque is obtained from an improved disturbance torque observer with online parameters updated. The proposed MTPA method, which is parameter independent and can improve the motor operation at low-speed or approaching to zero speed, is designed based on the power perturbation resulted from the signal injection in the current angle. Furthermore, the influence of current and voltage harmonics to the MTPA control also can be eliminated effectively. On the other hand, utilizing the improved Elman neural network (ENN) for the purpose of good performance of control strategy under a cyclic fluctuating load is proposed in this study. Finally, some experimental results using a prototype IPMSM drive system based on a low price digital signal processor (DSP) are presented. From the experimental results, the proposed control approach can guarantee the speed loop control performance even under a cyclic fluctuating load.
關鍵字(中) ★ 永磁同步馬達
★ 每安培最大轉矩控制
★ 干擾轉矩觀測器
★ 參數鑑別
★ Elman類神經網路
關鍵字(英) ★ Permanent magnet synchronous motor
★ Maximum torque per ampere control
★ Disturbance torque observer
★ Parameter identification
★ Elman neural network
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧與簡介 3
1-3 論文大綱 5
第二章 內藏式永磁同步馬達變頻驅動器硬體介紹 7
2-1 前言 7
2-2 馬達變頻驅動系統 7
2-3 改良式磁粉式煞車 8
2-4 變頻驅動控制電路板 9
2-5 數位訊號處理器 13
第三章 內藏式永磁同步馬達數學模型及電磁轉矩方程式 17
3-1 前言 17
3-2 內藏式永磁同步馬達數學模型 19
3-2-1 座標轉換 19
3-3 內藏式永磁同步馬達在abc座標系下之數學模型 22
3-4 內藏式永磁同步馬達在αβ座標系下之數學模型 24
3-5 內藏式永磁同步馬達在d-q座標系下之數學模型 27
3-6 凸極式反電動勢定義 29
第四章 功率型每安培最大轉矩控制 32
4-1 前言 32
4-2 每安培最大轉矩控制 33
4-3 基於訊號注入法之每安培最大轉矩控制 35
4-4 功率型每安培最大轉矩控制 37
第五章 基於每安培最大轉矩控制之改良型干擾轉矩觀測器 43
5-1 前言 43
5-2 參數估測法與速度迴路控制器設計 44
5-3 干擾轉矩補償觀測器 46
5-4 改良型干擾轉矩觀測器 47
第六章 改良型Elman 類神經控制器結合功率型每安培最大轉矩控制 49
6-1 前言 49
6-2 改良型Elman類神經網路架構 50
6-3 改良型Elman類神經網路線上學習法則 52
第七章 模擬與實驗結果 54
7-1 前言 54
7-2 設計 55
7-3 功率型每安培最大轉矩控制模擬 57
7-3-1 功率型每安培最大轉矩控制相位關係 59
7-4 遞迴最小平方參數估測及速度控制器設計模擬 61
7-5 功率型每安培最大轉矩控制結合改良型干擾轉矩觀測器模擬 64
7-6 改良型Elman類神經控制器結合功率型每安培最大轉矩控制模擬 68
7-7 改良型Elman類神經控制器與傳統控制器控制響應比較 70
7-8 功率型每安培最大轉矩控制實驗結果 73
7-8-1 功率型每安培最大轉矩控制與磁場導向控制效率比較 76
7-9 遞迴最小平方參數估測法及線上速度控制器參數設計實驗結果 80
7-10 結合功率型每安培最大轉矩控制及改良型干擾轉矩觀測器實驗結果 83
第八章 結論與未來研究方向 86
參考文獻 87
作者簡歷 91
參考文獻 [1]Kim, H., Son, J., Lee, J.: ‘A high-speed sliding-mode observer for the sensorless speed control of a PMSM’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 4069–4077
[2]Kim, S., Yoon, Y.D., Sul, S.K., Ide, K.: ‘Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 488–497
[3]Kazerooni, M., Hamidifar, S., Kar, N.C.: ‘Analytical modelling and parameter sensitivity analysis for the PMSM steady-state performance prediction’, IET Electr. Power Appl., 2013, 7, (7), pp. 586–596
[4]Lin, F.J., Hung, Y.C., Chen, J.M., Yeh, C.M.: ‘Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control’, IEEE Trans. Ind. Informat., 2014, 10, (2), pp. 1226–1241
[5]Lemmens, J., Vanassche, P., Driesen, J.: ‘PMSM drive current and voltage limiting as a constraint optimal control problem’, IEEE J. Emerg. Sel. Topics Power Electron., 2014, 3, (2), pp. 326–338
[6]Sun, T., Wang, J., Chen, X.: ‘Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 5036–5045
[7]Shi, Y., Sun, K., Huang, L., Li, Y., Xiao, X.: ‘Control of interior permanent magnet synchronous motor drives with cyclic fluctuating load’, 15th international Conference on Electrical Machines and Systems (ICEMS), 2012, pp. 1–5
[8]Bolognani, S., Petrella, R., Prearo, A., Sgarbossa, L.: ‘Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 105–114
[9]Antonello, R., Carraro, M., Zigliotto, M.: ‘Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 5086–5093
[10]Sun, T., Wang, J.: ‘Extension of virtual signal injection based MTPA control for interior permanent magnet synchronous machine drives into field weakening region’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 6809–6817
[11]Do, T.D., Kwak, S., Choi, H.H., Jung, J.W.: ‘Suboptimal control scheme design for interior permanent magnet synchronous motors: An SDRE-based approach’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 3020–3031
[12]Su, Y.X., Zheng, C.H., Duan, B.Y.: ‘Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 814–823
[13]Li, J., Ren, H.P., Zhong Y.R.: ‘Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 712–720
[14]Choi, H.H., Vu, N.T.T., Jung, J.W.: ‘Digital implementation of an adaptive speed regulator for a PMSM’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 3–8
[15]Li, W., Hori, Y.: ‘Vibration suppression using single neuron-based PI fuzzy controller and fractional-order disturbance observer’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 117–126
[16]Huang, W.S., Liu, C.W., Hsu, P.L., Yeh, S.S.: ‘Precision control and compensation of servomotors and machine tools via the disturbance observer’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 420–429
[17]Yoon, Y.D., Jung, E., Sul, S.K.: ‘Application of a disturbance observer for a relative position control system’, IEEE Trans. Ind. Appl., 2010, 46, (2), pp. 849–856
[18]Ruderman, M., Ruderman, A., Bertram, T.: ‘Observer-based compensation of additive periodic torque disturbances in permanent magnet motors’, IEEE Trans. Ind. Informat., 2013, 9, (2), pp. 1130–1138
[19]Lin, F.J.: ‘Real-time IP position controller design with torque feedforward control for PM synchronous motor’, IEEE Trans. Ind. Electron., 1997, 44, (3), pp. 398–407
[20]Elman, J.L.: ‘Finding structure in time’, Cognitive Sci., 1990, 14, pp. 179–211
[21]Chen, W., Gong, Q., Yin, C., Wang, T.: ‘An Elman neural network application on dynamic equivalents of power system’, Conf. on Electrical and Control Engineering (ICECE), 2010, pp376-379
[22]Liang, Y.C.: ‘Application of Elman neural network in short-term load forecasting’, Conf. on Artificial Intelligence and Computational Intelligence (AICI), 2010, pp.141-144
[23]Niu, L., Xu, D., Yang, M., Gui, X., Liu, Z.: ‘On-line inertia identification algorithm for PI parameters optimization in speed loop’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 849–858
[24]高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[25]Microchip,MCP4922 datasheet.
[26]瑞智精密股份有限公司, http://www.rechi.com
[27]劉昌煥,「交流電機控制」,東華書局,民國92年。
[28]Texas Instruments,AM26LS32ACN datasheet.
[29]Lin, F.J.: ‘Robust speed controlled induction motor drive using EKF and RLS estimation’, Proc. Inst. Electr. Eng.—Elect. Power Appl., 1996, 143, (3), pp. 186–192
[30]Yang, S.H., Lorenz, R.D.: ‘Surface permanent-magnet machine self-sensing at zero and low speeds using improved observer for position, velocity, and disturbance torque estimation’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 151-160
[31]陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[32]Mohamed, S.Z., Mahmoud, A.M., Shokry, S.S.: ‘High dynamic performance of interior permanent magnet synchronous motor drives based on feed-forward load torque compensator’, Electric Power Components and Systems, 2012, 41, (3), pp. 235-251
[33]Hong, K., Nam, K.: ‘A load torque compensation scheme under the speed measurement delay’, IEEE Trans. Ind. Electron., 1998, 45, (2) pp. 283-290
[34]Zhang, Y., Akujuobi, C.M., Ali, H.W.: ‘Load disturbance resistance speed controller design for PMSM’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp.1198-1208
[35]蔡佳宏,「利用智慧型控制之併網型鼠籠式感應風力發電系統」,中央大學電機工程學系,碩士論文,民國104年6月
[36]Lin, F.J., Huang Y.S., Tan K.H., Chang Y.R.: ‘Active islanding detection method via current injection disturbance using Elman neural network’, Chinese Institute of Engineers, 2015, 38, (4), pp.517-535
[37]李毓彥,「以微控器研製永磁同步馬達的向量控制驅動器」,台北科技大學電機工程系,碩士論文,民國98年6月
指導教授 林法正(Faa-Jeng Lin) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明