博碩士論文 103521082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.222.107.128
姓名 於迪萱(Ti-Hsuan Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以田口方法進行最佳機率負載潮流分析
(Taguchi method based probabilistic optimal load flow analysis)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於近年來大量併接分散式電源於配電系統,造成傳統電力系統莫大影響,其中又以再生能源發電量波動影響最為劇烈,若本地負載無法消耗分散式電源之發電量即可能發生逆送電力情形,因此發展適用含分散式電源之配電系統三相不平衡負載潮流分析格外重要,透過前一日之排程可以做為系統運轉者調度發電機組之參考,使系統運轉具最高經濟效益。
本論文提出一種新的機率負載潮流方法,使用田口方法中的田口直交表對隨機變數之機率密度函數取樣,求取匯流排電壓、線路潮流之平均值及標準差,並透過因子反應,選擇線路潮流變化最大之情境,結合本論文發展的分散式電源模型,設定極端情境於特定末端節點裝設風力機組及太陽能發電系統,導致系統電壓升高超過法規規範值,透過最佳化方法計算分散式電源電壓設定,依據本論文提出的模型,改善當前的不正常情形,同時考慮電力系統負載變動及再生能源間歇性。模擬結果將與蒙地卡羅方法以及點估計法比較,以25 Bus澎湖電力系統、IEEE 118-bus系統及修改的12 Bus台電系統驗證本方法節省機率潮流的運算時間同時兼顧結果的精確性。
摘要(英) As the penetration of distributed generation goes up rapidly, the traditional power system is faced with challenges. One of the most severe problems for renewable energy is the fluctuation of the output power. If the output power of distributed generators could not be consumed by local loads, inverse load flow may occur. As a result, developing three-phase unbalanced load flow algorithms for distribution system considering distributed generation seem to be particularly important. By means of day-ahead scheduling, operators could take it as a reference to make an optimal decision.
This thesis proposes a novel probabilistic load flow method that is based on Taguchi’s orthogonal arrays from Taguchi method. The proposed method only needs to sample probabilistic variables through orthogonal arrays and utilize few deterministic load flows to obtain the mean and standard deviation of bus voltages. An optimal experiment is also achieved through main effects from Taguchi’s method with the largest deviation from the nominal line-flow result. This thesis also presents a more practical model for distributed generators. To proof the well-behavior of this model, some abnormal operation scenarios are demonstrated. When over-voltage or low-voltage situation occurs caused by excess output power from wind turbine and PV, the model will acquire a voltage set point from optimal algorithm in order to absorb or generate reactive power to improve voltage profile considering the deviation of demands and output power from renewable energies. The simulation results were compared with results attained by Monte Carlo simulation (MCS) and point estimate method (PEM). A 25-bus Penghu system, an IEEE 118-bus system and a modified 12-bus feeder in Taiwan are used as test systems. The results show that the proposed method attains both accurate means and standard deviations of bus voltages and line flows and is time-saving.
關鍵字(中) ★ 田口方法
★ 分散式電源
★ 機率負載潮流
★ 三相不平衡負載潮流
★ 配電系統
★ 逆送電力
關鍵字(英) ★ Taguchi’s method
★ distributed generation
★ probabilistic load flow
★ three-phase unbalanced load flow
★ distribution system
★ inverse power flow
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文目標與貢獻 4
1.4 論文架構 5
第二章 問題描述 7
2.1 分散式電源發展現況 7
2.2 分散式電源併網衝擊 10
2.3 分散式電源管制標準 10
2.4 分散式電源虛功補償對系統電壓之影響 13
第三章 三相不平衡負載潮流 15
3.1 方法背景 15
3.2 模型建置 17
3.2.1 三相線路阻抗 17
3.2.2 負載及電容器模型 20
3.3 負載潮流方法 24
3.3.1 匯流排注入功率與分支電流關係矩陣 24
3.3.2 分支電流與匯流排電壓關係矩陣 25
3.3.3 疊帶求解方法 26
3.4 用於負載潮流之分散式電源模型 27
3.4.1 PV 模式模型 28
3.4.2 PQ 模式模型 30
第四章 以田口方法為基礎的機率負載潮流方法 31
4.1 田口方法概述 31
4.1.1 歷史回顧 31
4.1.2 實驗設計基本原理 32
4.2 直交表建構 33
4.2.1 直交表意義 34
4.2.2 兩水準直交表建構步驟 36
4.2.3 範例說明 37
4.3 直交表實驗 38
4.3.1 全因子實驗 39
4.3.2 田口直交表實驗 39
4.4 田口方法於機率潮流應用 43
4.4.1 田口機率潮流優點 46
4.4.2 實驗設計 46
4.4.3 方法步驟 48
第五章 最佳化電力系統排程 52
5.1 最佳化問題之數學表示式 52
5.2 最佳化問題之求解過程 53
5.3 最佳化電力系統排程之求解方法 54
5.3.1 數學模型 54
5.3.2 分散式電源電壓調整策略 55
5.3.3 最佳電力系統排程求解步驟 57
第六章 模擬結果 58
6.1 單相輸電系統 58
6.1.1 系統介紹 58
6.1.2 未考慮最佳化之機率負載潮流解 65
6.1.3 田口方法機率負載潮流分析 70
6.1.4 田口方法最佳實驗選擇 94
6.1.5 不同變動程度之輸入隨機變數運算分析 96
6.2 三相不平衡配電系統 105
6.2.1 系統介紹 105
6.2.2 未考慮最佳化之機率負載潮流解 108
6.2.3 田口方法三相機率負載潮流分析 111
6.2.4 分散式電源之PV模式及PQ模式 115
6.2.5 最佳化分散式電源電壓設定 120
6.2.6 發電變動下之最佳化分散式電源電壓設定 127
第七章 結論與未來展望 133
7.1 結論 133
7.2 未來展望 134
參考文獻 135
附錄一 146
附錄二 149
附錄三 152
作者簡歷 153
參考文獻 [1] 許振廷、許智為、黃宏銘、鄭尊仁,「光伏發電對配電系統之影響評估」,中華民國第二十九屆電力工程研討會論文集,台灣台南,2008年12月,第1834-1838頁。
[2] A. Soroudi, “Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment,”IEEE Trans. Power Syst., vol. 27, no. 3, pp.1283-1293, 2012.
[3] D. Zhu, R. P. Broadwater, K. Tam, R. Seguin, and H. Asgeirsson, “Impact of DG placement on reliability and efficiency with time-varying loads,” IEEE Trans. Power Syst., vol. 21, no. 1, pp. 419-427, 2006.
[4] A. Asrari, T. Wu, and S. Lotfifard, “The Impacts of distributed energy sources on distribution network reconfiguration,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 606-613, 2016.
[5] M. Cresta, F. M. Gatta, A. Geri, M. Maccioni, A. Mantineo, and M. Paulucci, “Optimal operation of a low-voltage distribution network with renewable distributed generation by NaS battery and demand response strategy: a case study in a trial site,” IET Renew. Power Gen., vol. 9, no. 6, pp. 549-556, 2015.
[6] B. Hayes, I. Hernando-Gil, A. Collin, G. Harrison, and S. Djokić, “Optimal power flow for maximizing network benefits from demand-side management,” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1739-1747, 2014.
[7] E. Azad-Farsan, S. M. M. Agah, H. Askarian-Abyaneh, M. Abedi, and S. H. Hosseinian, “Stochastic LMP (Locational marginal price) calculation method in distribution systems to minimize loss and emission based on Shapley value and two-point estimate method,” Energy, vol. 107, pp. 396–408, 2016.
[8] D. S. Kirschen and H. P. Van Meeteren, “MW/voltage control in a linear programming based optimal power flow,” IEEE Trans. Power Syst., vol. 3, no. 2, pp. 481-489, 1988.
[9] D. I. Sun, B. B. Ashely, A. Hughes, and W. F. Tinney, “Optimal power flow by newton approach,” IEEE Power Eng. Rev., Vol. PAS-103, pp.2864-2880, 1984.
[10] 林祐諄,「考慮再生能源之最佳化快速機率潮流以求解無效電力」,碩士論文,中央大學,2012年6月。
[11] 游博升,「工廠電力系統中考量不確定性再生能源之最佳化實功發電與需量調派」,碩士論文,中原大學,2013年6月。
[12] Y. Cao, Y. Tan, C. Li, and C. Rehtanz, “Chance-constrained optimization-based unbalanced optimal power flow for radial distribution networks,” IEEE Trans. Power Deliv., vol. 28, no. 3, pp. 1855-1864, 2013.
[13] A. Rabiee and A. Soroudi, “Stochastic multiperiod OPF model of power systems with HVDC-connected intermittent wind power generation,” IEEE Trans. Power Deliv., vol. 29, no. 1, pp. 336–344, 2014.
[14] G. Mokryani and P. Siano, “Evaluating the integration of wind power into distribution networks by using Monte Carlo simulation,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 244–255, 2013.
[15] C. S. Saunders, “Point estimate method addressing correlated wind power for probabilistic optimal power flow,” IEEE Trans. Power Syst., vol. 29, no. 3, pp.1045-1054, 2014.
[16] J. Usaola, “Probabilistic load flow in systems with wind generation,” IET Gener. Transm. Distrib., vol. 3, no. 12, pp. 1031–1041, 2009.
[17] 楊豐碩、張鼎煥、陳雅琴、黃君浩、丁蕙萱、施雅慧,「我國引用德國再生能源饋網電價配套措施之可行機制評析」,行政院環境保護署,EPA-99-FA11-03-A202,2012年2月。
[18] H. Poser, J. Altman, F. ab Egg, A. Granata, and R. Board, “Development and integration of renewable energy: lessons learned from germany,” Finadvice, FAA Financial Advisory AG, Switzerland, July 2014.
[19] Global Wind Energy Council(GWEC). [Online]. Available: http://www.gwec.net/global-figures/graphs/
[20] GTM Research: Global Solar PV Installations Grew 34% in 2015. [Online]. Available: http://goo.gl/81KxT4
[21] Y. Yang, P. Enjeti, F. Blaabjerg, and H. Wang, “Wide-scale adoption of photovoltaic energy: grid code modifications are explored in the distribution grid,” IEEE Ind. Appl. Mag., vol. 21, no. 5, pp.21-31, 2015.
[22] T. Ackermann, E. M. Carlini, B. Ernst, F. Groome, A. Orths, J. O′Sullivan, M. T. Rodriguez, and V. Silva, “Integrating variable renewables in Europe : current status and recent extreme events,” IEEE Power Energy Mag., vol. 13, no. 6, pp.67-77, 2015.
[23] European Network of Transmission System Operators for Electricity, “Solar eclipse impact analysis,” ENTSOE, Feb. 2015.
[24] 中國國家能源局,國家能源局關於做好三北地區可再生能源消納工作的通知,國能監管39號,2016年02月。
[25] L. Jiang, C. Wang, Y. Huang, Z. Pei, S. Xin, W. Wang, S. Ma, and T. Brown, “Growth in wind and sun : integrating variable generation in China,” IEEE Power Energy Mag., vol. 13, no. 6, pp.40-49, 2015.
[26] 中華民國-再生能源發展條例,華總一義字第 09800166471 號,2009年 7 月 8 日。
[27] 經濟部能源局-陽光屋頂百萬座計畫,[Online]. Available: http://goo.gl/RP0Ybx
[28] 經濟部能源局網站,[Online]. Available: www.moeaboe.gov.tw/
[29] 台灣電力公司-台灣電力股份有限公司再生能源發電系統併聯技術要點,[Online] Available: http://goo.gl/7XWZub
[30] 卓明遠、張文曜,「配電線路因異常電壓引起用戶器具燒損之保護研究」,台灣電力股份有限公司,台北,TPC -546-4835-0101,2014年。
[31] N. Nimpitiwan, G. T. Heydt, R. Ayyanar, and S. Suryanarayanan, “Fault current contribution from synchronous machine and inverter based distributed generators,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 634-641, 2007.
[32] IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, 2013.
[33] 台灣電力公司-電力系統諧波管制暫行標準,1993年。[Online]. Available:
http://www.taipower.com.tw/content/UHV/UHV01-1.aspx?UType=3&sid=6
[34] P. E. Sutherland, “Ensuring stable operation with grid codes: a look at Canadian wind farm interconnections,” IEEE Ind. Appl. Mag., vol. 22, no. 1, pp. 60-67, 2016.
[35] “Guidelines for applicants connecting distributed generation,” Halton Hills Hydro, 2015. [Online]. Available: http://goo.gl/NhaRBS
[36] Grid Code: High and Extra High Voltage, E. ON Netz GmbH Tech. Rep., 2006, Status: 1.
[37] X. F. Wang, Y. Song, and M. Irving, “Modern power systems analysis,” New York: Springer, 2008.
[38] 鄧人豪,「配電系統三相解耦負載潮流之研究及其模型應用」,博士論文,國立中山大學,1996年6月。
[39] B. Venkatesh and R. Ranjan, “Data structure for radial distribution system load flow analysis,” IEE Proc. Generat. Transm. Distrib., vol. 150, no. 1, pp. 101–106, 2003.
[40] R. M. Ciric, A. P. Feltrin, and L. F. Ochoa, “Power flow in fourwire distribution networks—general approach,” IEEE Trans. Power Syst., vol. 18, no. 4, pp. 1283–1290, 2003.
[41] M. Dilek, F. de León, R. Broadwater, and S. Lee, “A robust multi-phase power flow for general distribution networks,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 760–768, 2010.
[42] R. D. Zimmerman and H. D. Chiang, “Fast decoupled power flow for unbalanced radial distribution system analysis,” IEEE Trans. Power Syst., vol. 10, no. 4, pp. 2045-2052, 1995.
[43] P. Aravindhababu, S. Ganapathy, and K. R. Nayar, “A novel technique for the analysis of radial distribution systems,” Int. J. Electr. Power Energy Syst., vol. 23, no. 3, pp. 167–171, 2001.
[44] S. N. G. Naik, D. K. Khatod, and M. P. Sharma, “Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks,” IET Gener. Transm. Distrib., vol. 9, no. 3, pp.209-220, 2015.
[45] V. H. M. Quezada, J. R. Abbad, and T. G. S. Roman, “Assessment of energy distribution losses for increasing penetration of distributed generation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp.533–540, 2006.
[46] N. Rajaei and M. M. A. Salama, “Management of fault current contribution of synchronous DGs using inverter-based DGs,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp.3073–308, 2015.
[47] J. T. Carson, “Wave propagation in overhead wires with ground return”, Bell System Technical Journal, vol. 5, no. 4, pp. 539-554, 1926.
[48] W. H. Kersting, “Distribution system modeling and analysis”, CRC Press, 2012.
[49] J. H. Teng, “A direct approach for distribution system load flow solutions,” IEEE Trans. Power Deliv., vol. 18, no. 3, pp. 882–887, 2003.
[50] 陳朝順、許振廷、林嘉宏,「微電網系統暫態減緩之智慧型控制技術建立」,行政院原子能委員會,2012年 12 月。
[51] IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, Standard 1547-2003, 2014.
[52] R. Carnieletto, D.I. Brandão, S Suryanarayanan, F.A. Farret, and M.G. Simões, “Smart grid initiative,” IEEE Ind. Appl. Mag., vol. 17, no. 5, pp. 27-35, 2011.
[53] M. S. Phadke著,黎正中譯,「穩健設計之品質工程」,第一版,台北市:台北圖書有限公司,1993年1月。
[54] 李輝煌,「田口方法 : 品質設計的原理與實務」,第四版,高力圖書,2011年5月。
[55] 清華大學品質研究中心-田口式品質工程,專訪世界品質大師田口玄一博士,[Online]. Available: http://goo.gl/I2CfUa
[56] D.C. Montgomery, “Design and analysis of experiments”, 8th ed, John Wiley& Sons, 2012.
[57] Y. Y. Hong, F. J. Lin, and T. H. Yu, "Taguchi method-based probabilistic load flow studies considering uncertain renewables and loads," IET Renew. Power Gen., vol. 10, no. 2, pp. 221-227, 2016.
[58] M. V. M. Nguyen, “Some new constructions of strength 3 mixed orthogonal arrays,” J. Stat. Plan. Infer., vol. 138, no. 1, pp. 220-233, 2008.
[59] C.Y. Suen, A. Das, and A. Dey, “On the construction of asymmetric orthogonal arrays,” Statistica Sinica 11, pp.241-260, 2011.
[60] T. F. Zhang, Y. Y. Zong, and A. Dey, “On the construction of asymmetric orthogonal arrays,” J. Stat. Plan. Infer., vol. 170, pp. 77–82, 2016.
[61] K.Y. Chan, C.K. Kwong, H. Jiang, M.E. Aydin, and T.C. Fogarty, “A new orthogonal array based crossover, with analysis of gene interactions, for evolutionary algorithms and its application to car door design,” Expert Syst. Appl., vol. 37, no. 5, pp.3853-3862, 2010.
[62] A. M. Omekanda, “Robust torque and torque-per-inertia optimization of a switched reluctance motor using the Taguchi methods,” IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 473–478, 2006.
[63] A. Klein, A. Awada, B. Wegmann, and I. Viering, “Optimizing the radio network parameters of the long term evolution system using Taguchi′s method,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3825–3839, 2011.
[64] 羅錦興,「田口品質工程指引」,第一版,中國生產力中心,1999年5月。
[65] 徐世輝,「品質管理」,第一版,前程文化,2007年9月。
[66] 林雲德,「應用田口方法改善接觸式三次元測量儀量測品質」,碩士論文,國立交通大學,2008年7月。
[67] R. N. Kacker, E. S. Lagergren, and J. J. Filliben, “Taguchi’s orthogonal arrays are classical designs of experiments,” J. Res. Natl. Inst. Stand. Technol., vol. 96, no. 5, 1991.
[68] S. Conti and S. Raiti, “Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators,” Sol. Energy, vol.81, no. 12, pp. 1473–1481, 2007.
[69] P. Chen, Z. Chen, and B. Bak-Jensen, “Probabilistic load flow: A review” Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjuing, 2008, pp. 1586-1591.
[70] M Hajian, W. D. Rosehart, and H. Zareipour, “Probabilistic power flow by Monte Carlo simulation with latin supercube sampling,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1550-1559, 2013.
[71] R. N. Allan, A. M. L. da Silva, and R. C. Burchett, “Evaluation methods and accuracy in probabilistic load flow solutions,” IEEE Trans. Power Appar. Syst., vol. PAS-100, no. 5, pp. 2539-2546, 1981.
[72] P. Zhang and S. T. Lee, “Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion,” IEEE Trans. Power Syst., vol. 19, no. 1, pp. 676–682, Feb. 2004.
[73] C. L. Su, “Probabilistic load-flow computation using point estimate method,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1843–1851, 2005.
[74] X. Ai, J. Wen, T. Wu, and W. J. Lee, “A discrete point estimate method for probabilistic load flow based on the measured data of wind power’, IEEE Trans. Ind., vol. 49, no. 5, pp. 2244–2252, 2013.
[75] R. K. Roy, “Design of experiments using the Taguchi approach,” 1st ed, John Wiley & Sons Inc., 2001.
[76] H.Yu and W. D. Rosehart, “An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1808–1817, 2012.
[77] S. H. Low, “Convex relaxation of optimal power flow—Part I: formulations and equivalence, IEEE Trans. Control of Netw. Syst., vol.1, no.1, pp. 15-27, 2014.
[78] J. Carpentier, “Contribution to the economic dispatch problem,” Bull. Soc. Francoise Electr., vol. 3, no. 8, pp. 431–447, 1962.
[79] K. Y. Lee, J. L. Ortiz, M. A. Mohtadi, and Y. M. Park, “Optimal operation of large-scale power systems”, IEEE Trans. Power Syst., vol. 3, no. 2, pp. 413–420, 1988.
[80] F. Zhuang and F.D. Galiana, "Towards a more rigorous and practical unit commitment by Lagrangian relaxation," IEEE Trans. Power Syst., vol. 3, no. 2, pp. 763-773, 1988.
[81] 黃琮暉,「應用最佳化電力潮流於電力系統復電策略之研究」,博士論文,國立中山大學,2008年6月。
[82] N. Mo, Z. Y. Zou, K. W. Chan, and T. Y. G. Pong, “Transient stability constrained optimal power flow using particle swarm optimisation”, IET Gener. Transm. Distrib., vol. 1, No. 3, pp. 476-483, 2007.
[83] V. J. Gutierrez-Martinez, C. A. Canizares, C. R. Fuerte-Esquivel, A. Pizano-Martinez, and X. Gu, “Neural-network security-boundary constrained optimal power flow”, IEEE Trans. Power Syst., vol. 26, no. 1, pp. 63-72, 2011.
[84] 李炯頤,「利用潮流分配因子計算電力損失及節點電價」,碩士論文,國立清華大學,2009年6月。
[85] T. J. Overbye, X. Cheng, and Y. Sun, “A comparison of the AC, and DC power flow models for LMP calculations,” in Proc. 37th Hawaii Int. Conf. Syst. Sci., 2004, pp. 5–8.
[86] B. Stott, J. Jardim, and O. Alsaç, “DC power flow revisited,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, 2009.
[87] K. S. Pandya and S. K. Joshi, "A survey of optimal power flow methods", Journal of Theoretical and Applied Information Technology, vol. 4, no. 5, pp. 450-458, 2008.
[88] J. A. Momoh, “Electric power system allications of optimization”, Marcel Dekker Inc.,2001.
[89] 林士鈞,「考慮澎湖離岸式風力發電與台澎海底電纜之特殊保護系統」,碩士論文,中原大學,2006年7月。
[90] 吳天明,「台電在台灣本島及離島推動風力發電概況報導」,源雜誌,第九十一期,第4-13頁,2012年1月。
[91] 余勝雄,「我國風力發電現況及展望」,永續產業發展雙月刊,第三十五期,第16-21頁,2007年。
[92] 台灣電力公司負載特性與機型配比,[Online]. Available: http://goo.gl/c2ggCx
指導教授 林法正(Faa-Jeng Lin) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明