博碩士論文 103521088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.116.65.125
姓名 李昇洺(Sheng-Ming Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 V及D頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製
(Design of V- and D-Band High-Division-Ratio Injection-Locked Frequency Dividers and Quadrature Frequency-Locked Loop)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,對於高速資料傳輸量的需求,促使更多相關毫米波的通訊系統的研究。在現今收發機裡,本地振盪源通常以鎖相迴路來實現。對於收發機而言,本地振盪源需要低功耗及低相位雜訊。毫米波的鎖相迴路裡需要多級的除頻器來提供高除數。本論文主要針對微波注入鎖定技術應用於除頻器及鎖頻迴路,以達到低功耗、低相位雜訊之研究。第二章主要內容為一個V頻段高除數注入鎖定除十頻器之分析、設計及量測結果。第三章為具鎖頻迴路自對準之次諧波注入鎖定振盪器之電路設計與量測結果。最後,第四章為D頻段注入鎖定除四頻器。V頻段高除數注入鎖定除十頻器及具鎖頻迴路自對準之次諧波注入鎖定振盪器採用台積電提供的90 nm互補式金氧半場效電晶體製程(TSMC 90 nm GUTM CMOS)。D頻段注入鎖定除四頻器則是採用台積電提供的40 nm互補式金氧半場效電晶體製程(TSMC 40 nm GUTM CMOS)。
  第二章首先介紹數種除頻器架構及注入鎖定理論。然後提出注入鎖定除五除頻器對鎖定頻寬的理論模型,從理論模型分析得知,鎖定頻寬跟注入器(injector)的元件與注入訊號大小成正比。利用電感最大化諧波項,提升除五及除十除頻器鎖定頻寬。注入鎖定除十除頻器量測鎖定頻寬為4.2 GHz相當於6.8 %比例頻寬,電路直流總功耗為16 mW。
  第三章為具鎖頻迴路自對準之次諧波注入鎖定振盪器。首先介紹理論模型及轉移函數,接著利用ADS(advance design system)軟體進行模擬分析鎖頻迴路,能夠有效率的分析鎖頻迴路系統的開迴路及閉迴路響應。此外,利用提出的理論模型分析比較各種結構頻率合成器之相位雜訊及抖動量。量測的鎖頻範圍為48.8 到51.1 GHz,各個控制電壓的鎖定範圍約為30 MHz,輸出功率大於-11 dBm。當輸出鎖定頻率為49.7 GHz時,距載波偏移1 MHz的相位雜訊為-103.4 dBc/Hz,抖動量積分範圍由1 kHz到40 MHz為124.8 fs。電路直流總功耗為75.4 mW。
  第四章為寬鎖定頻寬及低功耗的D頻段注入鎖定除四除頻器。如同第二章,鎖定頻寬跟注入器(injector)的元件與注入訊號大小成正比。注入鎖定除四除頻器的自由振盪頻率大約為35.8GHz,相位雜訊為-60.9 dBc/Hz。當注入訊號大小為-5 dBm時,量測所得到的鎖定頻寬約為2.5 GHz,從142.5至145GHz。注入訊號為144 GHz時,輸入與輸出距載波偏移100 kHz的相位雜訊分別為-91.3 dBc/Hz及-102.6 dBc/Hz。輸入與輸出訊號源相位雜訊的差值約為12 dB,與理論計算20log4相符。主要電路功耗為2.2 mW。
摘要(英) In recent years, the research of millimeter-wave transceiver is increasing to serve a vast range of applications for high data rate wireless communication. A phase-lock loop (PLL) is widely used as a local oscillator (LO) in modern communication transceivers. The LO needs low power consumption and low phase noise for frequency synthesis in most of the transceivers. The high-division-ratio divider chain is also needed in a millimeter-wave PLL. This thesis focuses on the millimeter-wave frequency divider and frequency-locked loop (FLL) using an injection-locked technique to achieve low power consumption and low phase noise. Analysis, design and measured results for V-band high-division-ratio divide-by-10 injection-locked frequency divider (ILFD) in Chapter 2. Analysis, design and measured results of the sub-harmonic injection-locked VCO with FLL self-alignment (SILFLL) are presented in Chapter 3. Finally, a D-band ILFD are proposed in Chapter 4. The V-band divide-by-10 ILFD and SILFLL in this thesis are fabricated using TSMC 90 nm GUTM CMOS process. The D-band ILFD is fabricated using TSMC 40 nm GUTM CMOS process.
First, several frequency dividers and the injection-locked theory are introduced in Chapter 2. Then, the locking range of divide-by-5 is investigated to obtain the design methodology. From the analysis, the locking range of ILFDs is proportional to the device size of the injectors and the amplitude of the injection signal. Using harmonic peaking inductor improves the locking range of divide-by-10 and divide-by-5 ILFDs. The proposed V-band divide-by-10 ILFD features a locking range of 4.2 GHz and a 6.9% fractional bandwidth. The power consumption is about 16 mW.
A sub-harmonic injection-locked oscillator with frequency-locked loop self-alignment (SILFLL) are presented in Chapter 3. First, the theoretical models and transfer functions of FLL are introduced, then using ADS (advance design system) software with system setup analyses FLL. We can efficiently analyze the opened-loop and closed-loop responses of the FLL system. Furthermore, a theoretical model of the SILFLL is proposed, and used to calculate phase noise and jitter for the comparison of various topologies frequency synthesizer. The measured locked range of the SILFLL is from 48.8 to 51.1 GHz and locking range for each control voltage is about 30 MHz. The measured output power is higher than -11 dBm over the range. When the injection-locked output frequency is 49.7 GHz, the measured phase noise (1 MHz offset) and RMS jitter (integrated from 1 kHz to 40 MHz) are -103.4 dBc/Hz and 124.8 fs, respectively. The total power consumption is about 75.4 mW.
In Chapter 4, we proposed a D-band wide locking range divide-by-4 ILFD with low power consumption. The locking range is proportional to the device size of the injectors and the amplitude of the injection signal like in Chapter 2. The free-running oscillation frequency of the proposed ILFD is about 35.8 GHz and phase noise is -60.9 dBc/Hz. The measured locking range is about 2.5 GHz from 142.5 to 145 GHz with an input power -5 dBm. When the input signal is 144 GHz, the measured input and output phase noises at 100 kHz offset are respectively -91.3 and -102.6 dBc/Hz. The phase noise difference between input and output is about 12 dB, and it agrees with the theoretical calculation (20log4). The core power consumption is about 2.2 mW.
關鍵字(中) ★ V頻段
★ D頻段
★ 注入鎖定除頻器
★ 四相位
★ 鎖頻迴路
關鍵字(英) ★ V-band
★ D-band
★ Injection-Locked Frequency Divider
★ Quadrature
★ Frequency-Locked Loop
論文目次
摘要 V
Abstract VII
目錄 IX
圖目錄 XII
表目錄 XIX
第1章 緒論 1
1-1 研究動機及背景 1
1-2 現況研究及發展 2
1-3 貢獻 3
1-4 論文架構 4
第2章 V頻段除十注入鎖定除頻器 5
2-1 簡介 5
2-2 除頻器架構概述 5
2-2-1 單真一相位時序(TSPC)除頻器[64] 6
2-2-2 電流模式邏輯(CML)除頻器[65] 7
2-2-3 米勒(Miller)除頻器[66] 9
2-2-4 注入鎖定原理與除頻器 10
2-3 鎖定頻寬分析 14
2-3-1 分析電路模型簡介[72] 14
2-3-2 鎖定頻寬分析 16
2-3-3 分析結果與討論 31
2-4 V頻段注入鎖定除十除頻器 31
2-4-1 高除數預除器架構簡介[77] 31
2-4-2 電路設計 33
2-4-3 實驗結果與討論 36
2-5 總結 43
第3章 具鎖頻迴路自對準之V頻段次諧波注入鎖定四相位壓控振盪器 45
3-1 簡介 45
3-2 系統模擬與相位雜訊分 47
3-2-1 鎖頻迴路系統模擬[97] 48
3-2-2 鎖頻迴路暫態響應 59
3-2-3 鎖頻迴路相位雜訊分析 61
3-3 電路設計 67
3-3-1 脈衝產生器 67
3-3-2 次諧波注入鎖定四相位壓控振盪器 70
3-3-3 除二注入鎖定除頻器 74
3-3-4 電流模式邏輯除頻器 76
3-3-5 相位偵測器及頻率偵測器 78
3-4 電路實現及實驗結果與討論 86
3-4-1 次諧波注入鎖定四相位壓控振盪器量測 88
3-4-2 鎖相迴路量測 95
3-4-3 次諧波注入鎖定鎖相迴路量測 100
3-4-4 具鎖頻迴路自對準之次諧波注入鎖定四相位壓控振盪器量測 105
3-5 總結 114
第4章 117
4-1 簡介 117
4-2 電路架構 117
4-3 電路設計 118
4-3-1 鎖定頻寬 118
4-3-2 注入電流與振盪電流 120
4-4 實驗結果與討論 126
4-5 總結 137
第5章 結論 138
參考文獻 139
參考文獻 [1] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[2] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[3] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-StateCircuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A.Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681,Dec. 2010.2113, Aug. 2010.
[6] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[7] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A.Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imagingand gesture recognition,” IEEEInt. Symp. on VLSI Design, Automation and Test,Jun. 2012, pp. 56-57.
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[9] X. Zhang, X. Zhou, and A.S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol.40, no.5, pp.895-902, May 1992.
[10] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
[11] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.435-438, Jun. 2008.
[12] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range,” in Proc. Solid-State Circuits Conf., pp. 135-138, Sept. 2004.
[13] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers , pp.412-413, Feb. 2001.
[14] J.-C. Chien and L.-H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.544-621, Feb. 2007.
[15] K.-H. Tsai, L.-C. Cho, J.-H. Wu, S.-I. Liu, “3.5mW W-band frequency divider with wide locking range in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper, pp. 466-628, Feb. 2008.
[16] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
[17] S.-L. Jang, C.-F. Lee, and W.-H. Yen, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 142-144, Feb. 2008.
[18] H. Wu and L. Zhang, “A 16-to-18GHz 0.18-µm Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2482-2491, Feb. 2006.
[19] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking Range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390-392, Jul. 2010.
[20] X.-P. Yu, A.van Roermund, X.-L. Yan, H. M. Cheema, and R. Mahmoudi, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon.s Lett., vol. 19, no. 9, pp. 575-577, Sept. 2009.
[21] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-Tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229-231, Apr. 2010.
[22] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory. Tech., vol. 60, no. 6, pp.1617-1625, Jun. 2012.
[23] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2472-2481, Feb. 2006.
[24] P. Mayr, C. Weyers, and U. Langmann, “A 90GHz 65nm CMOS injection-locked frequency divider, ” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.198-596, Feb. 2007.
[25] S.-L. Jang, C.-C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, Apr. 2009.
[26] S.-H. Lee, S.-L. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373-375, May 2007.
[27] S-L Jang, Y.-H. Chuang, S.-H. Lee, and J.-J. Chao, “Circuit techniques for CMOS divide-by-four frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 217-219, Mar. 2007.
[28] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344-346, May 2008.
[29] H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-µm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[30] J. R. Hu and B. P. Otis, “A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.665-668, Jun. 2008.
[31] P.-K. Tsai, T.-H. Huang, and T.-H. Pand, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electronics Lett., vol. 46, no. 14, pp.1003-1004, Jul. 2010.
[32] M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “60 GHz CMOS divide-by-5 injection-locked frequency divider with an open-stub-loaded floating-source injector,” IEEE RFIC Symp., Jun. 2011, pp.1-4.
[33] 李銘偉,24 GHz 與60 GHz CMOS 低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國99年。
[34] 黃致勝,微波及毫米波注入式除頻器與振盪器暨射頻前端應用,國立中央大學電機工程研究所碩士論文,民國100年。
[35] L. Wang, Y. Z. Xiong, S. M. Hu, and T. G. Lim, “A 0.13-μm HBT divide-by-6 injection-locked frequency divider,” 2011 IEEE ASSC Conf., Nov. 2011, pp.97-100.
[36] P.-H. Feng, and S.-H. Liu, “A current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523-1532, Apr. 2013.
[37] T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa, “A 13.2% loking-range divide-by-6, 3.1mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, ” IEEE European Solid-State Circuits Conf., 2013, pp. 403-406.
[38] 廖彥涵,微波毫米波寬頻振盪器與鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國102年。
[39] 林宗憲,注入鎖定除頻器之研究及其鎖相迴路應用,國立中央大學電機工程研究所碩士論文,民國102年。
[40] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[41] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[42] K.-H. Tsai and S.-I. Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 276-277, Feb. 2009.
[43] C. Lee and S.-I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 196-596, Feb. 2007.
[44] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” Proc. Eur. Solid State Circuits Conf., pp. 472-475, Sept. 2007.
[45] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz quadrature PLL in 45nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494-495, Feb. 2009.
[46] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz clock generator using a harmonic-locked PD in 0.13-µm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404-408, May 2008.
[47] K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. VLSI Design, Automation and Test, pp.113-116, Apr. 2008.
[48] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop With A Multimode LC-Based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[49] S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[50] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[51] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at second pole frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp. 80-88, Jan. 2012.
[52] B.-Y. Lin and S.-I. Liu, “A 132.6-GHz phase-locked loop in 65 nm digital CMOS,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, no. 10, pp. 617-621, Oct. 2011.
[53] T.-Y. Chang, C.-S. Wang, and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 81-84, Nov. 2011.
[54] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[55] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[56] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C.-P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, and M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[57] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[58] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2635-2649, Nov. 2011.
[59] C.-Y. Wu, M.-C. Chen, and Yi-Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-µm CMOS for V-Band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[60] X. Zhang, X. Zhou, and A.S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol.40, no.5, pp.895-902, May 1992.
[61] N. D. Dalt, S. Deksen, P. Greco, C. Sandner, H. Schmid, and K. Strohmayer, “A fully integrated 2.4 GHz LC-VCO frequency synthesizerw with 3 ps jitter in 0.18 µm digital standard CMOS copper technology,” in Proc. Eur. Solid-State Device Research Conf., pp. 415-418, Sep. 2002.
[62] T.N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp.620-625, Mar. 2008.
[63] J.-L. Li, S.-W. Qu, and Q. Xue, “A theoretical and experimental study of injection-locked fractional frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2399-2408, Nov. 2008.
[64] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 2004.
[65] U. Singh and M. M. Green, “High-frequency CML clock divider in 0.13-µm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658-1661, Aug. 2005.
[66] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.
[67] B. Razavi, RF Microelectronics, Prentice-Hall, 1998
[68] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國100年。
[69] A. E. Sieman, Lasers, CA: University Science Books, 1986.
[70] R. R. Ward, The living Clocks, New York: Alfred Knopf, 1971.
[71] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.435-438, Jun. 2008.
[72] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory. Tech., vol. 60, no. 6, pp.1617-1625, Jun. 2012.
[73] Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
[74] B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Jill, 2001, ch.2.
[75] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[76] B.-Y. Lin and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, Jun. 2011.
[77] A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
[78] Y. Suzuki, Z. Yamazaki, Y. Amamiya, S. Wada, H. Uchida, C. Kurioka, S. Tanaka, and H. Hida, “120- Gb/s multiplexing and 110 Gb/s demultiplexing ICs,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2397-2402, Dec. 2011.
[79] M. Li, P. Wang, et al, “Low-voltage, wide-locking-range, millimeterwave divide-by-5 injection-locked frequency dividers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 679–685, Mar. 2012.
[80] M. Acar, D. Leenaerts, and B. Nauta, “A wideband CMOS injection-locked frequency divider,” in IEEE Microw. Wireless Compon. Lett., Jun. 2004, pp. 211–214.
[81] F.-H. Huang, D.-M. Lin, H.-P. Wang, W.-Y. Chiu, and Y.-J. Chan, “20 GHz CMOS injection-locked frequency divider with variable division ratio,” in 2005 IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2005, pp. 469–472.
[82] M. Farazian, P. S. Gudem, and L. E. Larson, “A CMOS multi-phase injection-locked frequency divider for V-band operation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 239–241, Apr. 2009.
[83] T. Siriburanon, W. Deng, A. Musa, K. Okada and A. Matsuzawa, “A 13.2% locking-range divide-by-6, 3.1mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs,” 2013 Proc. ESSCIRC, Bucharest, 2013, pp. 403-406.
[84] C.-C. Chan, et al, “A 31.2% locking range K-band divide-by-6 injectionlocked frequency divider using 90 nm CMOS technology,” 2015 IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, 2015, pp. 1-3.
[85] Y.-S. Lin, W.-H. Huang, C.-L. Lu, and Y.-H. Wang, “Wide-locking-range multi-phase-outputs regenerative frequency dividers using even-harmonic mixers and CML loop dividers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3065–3075, Dec. 2014.
[86] P. H. Feng and S. I. Liu, “A current-reused injection-locked frequency multiplication/division circuit in 40 nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523–1532, Apr. 2013.
[87] 劉深淵、楊清淵,鎖相迴路,第一章、第二章,滄海書局,民國100年。
[88] 黃書彥,鎖頻迴路及追蹤與保持放大器之研製,國立中央大學電機工程研究所碩士論文,民國104年
[89] 高曜煌,射頻鎖相迴路IC設計,第二章,滄海書局,民國94年。
[90] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[91] H.-Y. Chang, C.-C. Chan, I.-Y. Shen, Y.-L. Yeh, and S.-Y. Huang, “Design and analysis of CMOS low-phase-noise low-jitter sub-harmonically injection-locked VCO with FLL self-alignment technique,” IEEE Trans. Microw. Theory & Techn., vol. 64, no. 12, pp. 4632-4645, Dec. 2016.
[92] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 m CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 10, pp. 659-661, Oct. 2009.
[93] H. Grubinger, G. von Buren, H. Barth, and R. Vahldieck, “Continuous tunable phase shifter based on injection locked local oscillators at 30 GHz,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1821-1824.
[94] 葉彥良,應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究,國立中央大學電機工程研究所博士論文,民國102年。
[95] “Sonnet User’s Guide,” 12th ed Sonnet Software Inc. North Suracuse, NY, 2009.
[96] J. Lee, and H. Wang, “Study of sub-harmonically injection-locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[97] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[98] W. L. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[99] C.-H. Lin, and H.-Y. Chang, “A low-phase-noise CMOS quadrature voltage-controlled oscillator with self-injection-coupled technique,” IEEE Transactions on Circuit and System II, Exp. Briefs. vol. 59, no. 10, pp. 623-627, Oct. 2012.
[100] 林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國101年。
[101] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “A 40 GHz power efficient static CML frequency divider in 0.13-μm CMOS technology for high speed milimeterwave wireless systems,” IEEE ICCSC 2008, pp. 812-815.
[102] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[103] A. Pottbacker, U. Langmann, and H.-U. Schreiber “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[104] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009.
[105] H.-Y. Chang, and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46–59, Jan. 2012.
[106] “Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices Inc.
[107] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635-2649, Nov. 2011.
[108] W. EI-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi, and M. Hossain, “A 28-GHz quadrature fractional-N frequency synthesizer for 5G transceivers with less than 100-fs jitter based on cascaded PLL architecture,” IEEE Trans. Microw. Theory & Techn., vol. 65, no. 2, pp. 396-413, Feb. 2017.
[109] X. Yi, C.C. Boon, H. Liu, J. F. Lin, and W. M. Lim, “A 57.9-to-68.3GHz 24.6 mW frequency synthesizer with in-phase injection-coupled QVCO in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 347-359, Feb. 2014.
[110] W. Deng, T. Siriburanon, A. Musa, K. Okada, and A. Matsuzawa, “A sub-harmonic injection-locked quadrature frequency synthesizer with frequency calibration scheme for millimeter-wave TDD transceivers,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1710-1720, July 2016.
[111] T. Siriburanon, S. Kondo, M. Katsuragi, H. Liu, K. Kimura, W. Deng, K. Okada, and A. Matsuzawa, “A low-power low-noise mm-wave subsampling PLL using dual-step-mixing ILFD and tail-coupling quadrature injection-locked oscillator for IEEE 802.11ad,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1246-1260, May 2016.
[112] C.-C. Chan, H.-N. Yeh, G.-L. Huang, and H.-Y. Chang, “A V-band low-phase-noise low-jitter sub-harmonically injection-locked QVCO with high quadrature accuracy in 90-nm CMOS process,” in 2017 IEEE MTT-S International Microw. Symp. Dig., Honolulu Hawai’i, USA, June 2017, pp. 1-4.
[113] M. A. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[114] H.-H. Hsieh, H.-S. Chen and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-μm CMOS,” IEEE trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[115] L. Wu, H. C. Luong, “A 0.6V 2.2mW 58-to-73GHz divide-by-4 injection-locked frequency divider,” in Proc. 2012 IEEE Custom Integr. Circuit Conf., Sep. 2012, pp. 1-4
[116] I.-T. Lee, C.-H. Wang, C.-L. Ko, Y.-Z. Juang, and S.-I. Liu, “A 3.6 mW 125.7–131.9 GHz divide-by-4 injection-locked frequency divider in 90 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 3, pp. 132-134, Mar. 2012.
[117] C. C. Chen, H. Wang, H. W. Tsao, and C. H. Wang, “3 mW V-band divide-by-2 and W-band divide-by-4 wide locking range frequency dividers in 90-nm CMOS,” in Proc. IEEE MTTS, pp. 1089-1092, Jun. 2009.
[118] C.- Z. Chen, C.-C. Wang, Y.-S. Lin, and G.-W. Huang, “A 2.28 mW 80.8 GHz CMOS divide-by-4 DILFD with 18.24% locking range using tunable LC source-degeneration,” in Proc.IEEE International Symposium on VLSI-DAT, pp. 1-4, Apr. 2011.
[119] K. Yamamoto, and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in Proc. IEEE ISSCC, pp. 2472-2481, Feb. 2006.
[120] P. Mayr, C. Weyers, and U. Lang, “A 90 GHz 65-nm CMOS injectionlocked frequency divider,” in Proc. IEEE ISSCC, pp. 198-199, Feb. 2007.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明