博碩士論文 103521089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.95.139.100
姓名 簡世桓(Shih-Huan Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有良好選擇度的寬頻吸收式帶止濾波器
(Wideband Absorptive Bandstop Filters with Good Selectivity)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 微小化吸收式帶止濾波器之通帶改善★ 共面波導帶通濾波器之研製
★ 微帶耦合線帶通濾波器與雙工器研製★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製
★ K-Band及Q-Band毫米波帶通濾波器設計★ 薄膜製程射頻被動元件設計
★ 微波帶通低雜訊放大器設計★ 積體式微波帶通濾波器之研製
★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列★ 以多重耦合線實現多功能帶通濾波器
★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統★ 以多重耦合線實現單端至平衡帶通濾波器之分析與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一種新型寬頻吸收式帶止濾波器,可達到比既有相關研究增加數倍的止帶頻寬,同時具有高頻率選擇度及良好通帶特性。本研究於傳統寬頻帶止濾波器之共振器中放入適當電阻,成功地消耗掉止帶訊號,達到吸收止帶之功能,並提供一套完整的設計流程。為了驗證所提出之設計流程,本研究於印刷電路板實現一吸收式帶止濾波器,其中心頻率為2 GHz,比例頻寬為50%,漣波常數為0.1005 (即為0.044 dB等漣波響應)。於中心頻率2 GHz實測之衰減量為60.7 dB,30-dB止帶頻寬為23.5%,形狀因子 (Shape factor = RBW3-dB /RBW30-dB) 為2.1,>95%功率損耗頻寬為35.6%,以及在8 GHz之前的最大反射係數為-11.2 dB,具有良好吸收式止帶特性。又為拓展此寬頻吸收式帶止濾波器可實現之規格範圍,本研究亦提出兩種修正電路設計,並實作比例頻寬由30%至70%的吸收式帶止濾波器,其30-dB止帶頻寬為11.9%至42%,止帶內反射損耗均優於10 dB,超過90%的止帶內訊號皆能夠有效地消耗掉。本論文所提出之新型寬頻吸收式帶止濾波器具有高設計彈性,止帶頻寬以及止帶頻率選擇度均可依所需規格設計,並提出一套簡潔的設計流程,只需依據系統規格得到設計參數後,即可快速地設計寬頻吸收式帶止濾波器,將可應用於吸收非線性主動元件的諧波輸出,從而提升系統效能。
摘要(英) This study presents a new type of wideband absorptive bandstop filter (ABSF) design whose stopband bandwidth is several times wider than those in the other related previous works. In addition, high frequency selectivity and good passband response are achieved. The proposed wideband ABSF is based on adding one additional resistor to a conventional wideband bandstop filter to absorb the input power. A complete design procedure is proposed to realize the circuit design under given specifications. To validate the proposed design method, a proposed wideband ABSF with a center frequency of 2 GHz, a fractional bandwidth (FBW) of 50% and a Chebyshev response with a ripple constant ? = 0.1005 is implemented on a printed circuit board. The measured stopband rejection is 60.7 dB at 2 GHz. The measured 30-dB rejection bandwidth is 23.5% and the shape factor, i.e., RBW3-dB /RBW30-dB is 2.1. The measured bandwidth for better than 95% power dissipation is 35.6%. In addition, the measured input reflection coefficient is better than 11.2 dB from dc to 8 GHz and good stopband performance is achieved. This study also presents two modified design methods for expanding the realizable range on stopband bandwidth and filter order of the proposed wideband ABSF. Wideband ABSFs with FBWs ranging from 30% to 70% are implemented, and the corresponding measured 30-dB rejection band-width ranges from 11.9% to 42%. The measured input return losses are all better than 10 dB. Larger than 90% of the input power within the stopband can be successfully dissi-pated. The proposed ABSF features a complete design procedure with high design flexi-bility. The stopband bandwidth and frequency selectivity can all be designed according to the desired specifications. They can be applied to the harmonic suppression of nonlinear active devices to improve the system performance.
關鍵字(中) ★ 寬頻 關鍵字(英)
論文目次 論文摘要 I
Abstract II
目錄 III
圖形列表 V
表格列表 VI
第一章 緒論 1
1 1 研究動機 1
1 2 文獻回顧 1
1 3 章節介紹 4
第二章 寬頻吸收式帶止濾波器 5
2 1 電路架構 5
2 2 電路設計 7
2 2 1 設計流程 7
2 2 2 設計流程的驗證 8
2 2 3 電阻對於響應的影響 11
2 2 4 電路實作及性能 18
2 3 設計參數對響應的影響 22
2 3 1 頻寬對止帶特性之影響 22
2 3 2 階數對止帶特性之影響 25
2 4 小結 27
第三章 寬頻吸收式帶止濾波器之設計改良 28
3 1 頻寬偏窄時的設計改良 28
3 1 1 電路架構及設計流程 29
3 1 2 電路實作及性能 31
3 2 阻抗匹配的改善 35
IV
3 2 1 電路架構及設計流程 35
3 2 2 電路實作及性能 42
第四章 結論 51
參考文獻 57
參考文獻 [1] D. R. Jachowski, “Passive enhancement of resonator Q in microwave notch fil-ters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1315-1318.
[2] A. C. Guyette, I. C. Hunter, R. D. Pollard, and D. R. Jachowski, “Perfect-ly-matched bandstop filters using lossy resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 517–520.
[3] M. A. Morgan and T. A. Boyd, “Theoretical and experimental study of a new class of re?ectionless ?lter,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1214–1221, May 2011.
[4] M. A. Morgan and T. A. Boyd, “Re?ectionless ?lter structures,” IEEE Trans. Mi-crow. Theory Techn., vol. 63, no. 4, pp. 1263–1271, April 2015.
[5] J. Lee, T. C. Lee, and W. J. Chappell, “Lumped-element realization of absorptive bandstop filter with anomalously high spectral isolation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2424–2430, Aug. 2012.
[6] Y. Morimoto, T. Yuasa, T. Owada, and M. Miyazaki, “Multi-harmonic absorption filter using quasi-multilayered striplines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014.
[7] J.-Y. Shao and Y.-S. Lin, “Millimeter-wave bandstop filter with absorptive
stopband,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2014.
[8] J.-Y. Shao and Y.-S. Lin, “Narrowband coupled-line bandstop filter with absorp-tive stopband,” IEEE Trans. Microw. Theory Techn., vol. 63, no.10, pp. 3469–3478, Oct. 2015.
[9] D. Psychogiou, R. Gomex-Garcia, and D. Peroulis, “Acoustic wave resona-tor-based
absorptive bandstop filters with ultra-narrow bandwidth,” IEEE Microw. Wireless
Comp. Lett., vol. 25, no. 9, pp. 570–572, Sept. 2015.
[10] D. Psychogiou, R. Gomex-Garcia, and D. Peroulis, “Acous-tic-wave-lumped-element-resonator filters with equi-ripple absorptive stopbands,” IEEE Microw. Wireless Comp. Lett., vol. 26, no. 3, pp. 177-179, Mar. 2016.
[11] D. R. Jachowski, “Compact frequency-agile, absorptive bandstop filters,” in IEEE
MTT-S Int. Microw. Symp. Dig., June 2005, pp. 513-516.
[12] T. Snow, J. Lee, and W. J. Chappell, “Tunable high quality-factor absorptive
bandstop filter design,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012.
[13] B. Kim, J. Lee, J. Lee, B. Jung, and W. J. Chappell, “RF CMOS integrated on-chip tunable absorptive bandstop filter using Q-tunable resonators,” IEEE Trans. Electron Device., vol. 60, no. 5, pp. 1730-1737, May 2013.
[14] T.-C. Lee, J. Lee, E. J. Naglich, and D. Peroulis, “Octave tunable lumped-element notch filter with resonator-Q-independent zero reflection coefficient,” in IEEE MTT-S Int. Microw. Symp. Digest, June 2014.
[15] D. R. Jachowski, “Octave tunable lumped-element notch filter,” in IEEE MTT-S
Int. Microw. Symp. Digest, June 2012.
[16] T.-H. Lee, B. Kim, K. Lee, W. J. Chappell, and J. Lee, “Frequency-Tunable Low-Q Lumped-Element Resonator Bandstop Filter With High Attenuation,” IEEE Microw. Mag., vol. 64, no. 11, pp. 3549-3556, Nov. 2016.
[17] I. Hunter, A. Guyette, and R. D. Pollard, “Passive microwave receive filter
networks using low-Q resonators,” IEEE Microw. Mag., vol. 6, no. 3, pp. 46-53, Sept.
2005.
[18] D. R. Jachowski, “Cascadable lossy passive biquad bandstop filter,” in IEEE MTT-S. Int. Microw. Symp. Dig., pp. 1213-1216, June 2006.
[19] D. Psychogiou, R. Mao, and D. Perlious, “Series-cascaded absorptive notch-
filters for 4G-LTE radios,” in IEEE Radio Wireless Symp. Dig., pp. 177-179, Jan. 2015.
[20] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Micro-wave Applica-tions. New York: Wiley, 2001.
[21] W. F. Egan, Practical RF System Design. New York: Wiley, 2003.
[22] T. Hirota, A. Minakawa and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC′s," in IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 3, pp. 270-275, Mar 1990.
[23] T.-S. Horng, J.-M. Wu, L.-Q. Yang and S.-T. Fang, "A novel modified-T equiva-lent circuit for modeling LTCC embedded inductors with a large bandwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2327-2333, Dec. 2003.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2017-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明