博碩士論文 103521100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.191.165.226
姓名 吳維旻(Wei-Min Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用電流路徑操作技術之無巴倫差動輸出倍頻器
(A Balun-Less Frequency Multiplier with Differential Output by Current Flow Manipulation)
相關論文
★ 以90-nm CMOS 製程實現之47-GHz 壓控振盪器設計★ 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計
★ 使用系統封裝技術實現高頻率射頻能量獵取電路★ 擁有高增益之高模態介電共振器晶片上天線之340-GHz兆赫茲影像器
★ 以40-nm CMOS製程實現操作於100-GHz 之功率放大器設計★ 應用於感測器與太赫茲通訊之互補式金氧半高頻電路設計
★ 應用於毫米波影像與太赫茲通訊之互補式金氧半94-GHz及200-GHz接收機設計★ 應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器
★ 使用40奈米互補式金氧半製程之85-GHz功率放大器設計★ 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
★ 應用於太赫茲影像雷達及無線通訊系統之40-nm CMOS壓控振盪器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出了一個倍頻器無須額外的巴倫即可提供差動輸出之電路架構與技術。此架構在倍頻器輸入端之多功能網路,其操作此倍頻器核心電路周圍之電流流向,確保差動輸出兩端電流是在同一電流路徑下產生的。此多功能網路在基頻fin時為一匹配網路而在所需輸出諧波項頻率Nfin時為一通帶停止濾波器,阻止所需N倍頻輸出電流回流至倍頻器輸入端,此外,倍頻器中電晶體本身之米勒電容Cgd將會提升濾波器抑制輸出電流回流之能力,降低輸入端之多功能網路設計困難度。由於輸出電流有著相同的相位與大小,分別流入與流出相同輸出負載,因此倍頻器能完美的保持差動輸出。實作上此倍頻器利用90奈米互補式金氧半導體製程設計在60-GHz的頻率以驗證此差動輸出的架構理論。此倍頻器量測之輸出相位與功率差分別只有0.5度與0.2 dB,此時在60-GHz之輸出頻率的轉換增益為-5.5 dB,3dB頻寬比例為22.6%,基頻訊號抑制能力在頻寬內都能高於16.3 dB,在偏壓1 V與輸入功率-2 dBm進入電路情況下,功耗只有15.9 mW。
本篇論文也提出一個整合五級架構之低雜訊放大器、寬頻之LO巴倫、單平衡架構之混頻器與前述提出之倍頻器之94-GHz接收機前端電路。利用90奈米互補式金氧半導體製程實現此電路,其可在輸出10 MHz之IF頻率下提供模擬電壓轉換增益26.3 dB與雙邊頻帶雜訊12.2 dB,在偏壓1 V情況下只有20.4 mW之功耗。
摘要(英) This thesis presents a balun-less frequency multiplier architecture which can provide differential output without any additional balun required. The architecture manipulates the current flows around the multiplier core to enforce the output currents being generated from the same current loop by introducing a multifunction network at the multiplier input. This network works as an impedance matching network at the input frequency fin while becoming a band-stop filter at the desired output harmonic frequency Nfin for rejecting any N-th harmonic current flowing back to the multiplier input. Moreover, the intrinsic Miller capacitance of the multiplier transistors, Cgd, provides high band-stop rejection which greatly eases the multifunction network design. Hence the multiplier outputs are guaranteed to be perfectly differential as the output currents with same amplitude and phase flow into and out the loads with same impedance, respectively. A 60-GHz frequency doubler (FD) realized in a 90-nm CMOS technology is designed to verify the proposed frequency multiplier architecture. The measured phase and amplitude imbalance of the FD are only 0.5° and 0.2 dB while providing conversion gain of -5.5 dB at the output frequency of 60 GHz. The 3-dB fractional bandwidth is 22.6%. The fundamental rejection is better than 16.3 dB within the bandwidth. The FD consumes 15.9 mW from a 1 V supply as an input signal with -2 dBm power is applied.
A 94-GHz receiver front-end (RFE) which integrates a five-stage low-noise amplifier, a broadband LO balun, a single-balanced mixer, and a FD adopting the proposed FD architecture is also exhibited in this thesis. Implemented in a 90-nm CMOS technology, the RFE can provide simulated voltage conversion gain of 26.3 dB and double-sideband noise figure of 12.2dB at the IF frequency of 10 MHz while only consuming 20.4 mW from a 1 V supply.
關鍵字(中) ★ 毫米波
★ 倍頻器
★ 二倍頻器
★ 接收機前端
關鍵字(英) ★ mm-Wave
★ Frequency Multiplier
★ Frequency Doubler
★ RFE
論文目次 中文摘要 ……………………………………………………i
英文摘要 …………………………………………………iii
誌謝 …………………………………………………v
目錄 ………………………………………………vii
圖目錄 …………………………………………………x
表目錄 ………………………………………………… xiv

第一章
1.1
1.2 緒論 ……………………………………………………1
背景與動機………………………………………………1
論文章節簡介……………………………………………2
第二章 毫米波倍頻器相關研究發展與現況 …………3
2.1 毫米波頻段介紹及其應用………………………………3
2.1.1 71-76GHz/81-86GHz頻段及其應用介紹………3
2.1.2 77-81GHz頻段及其應用介紹 …………………4
2.2

倍頻器主要架構簡介……………………………………5
2.2.1 注入鎖定倍頻器…………………………………5
2.2.2 混頻器原理倍頻器………………………………6
2.2.3 Push-Push原理倍頻器 …………………………7
2.2.4 非線性原理倍頻器………………………………8
第三章 使用電流路徑操作技術之無巴倫差動輸出倍頻器 ……………………………………………11
3.1 60 GHz頻段介紹及其應用……………………………12
3.2 傳統倍頻器之架構與原理 ……………………………13
3.3
改良後之無巴倫差動輸出倍頻器 ……………………14
3.3.1 差動輸出倍頻器原理分析 ……………………15
3.4
改良後之60-GHz無巴倫差動輸出倍頻器……………20
3.4.1 差動輸出倍頻器架構介紹 ……………………20
3.4.2 差動輸出倍頻器設計流程 ……………………21
3.4.3 差動輸出倍頻器佈局後電路考量與實現 ……22
3.4.4 差動輸出倍頻器電路分析 ……………………23
3.4.5 差動輸出倍頻器佈局分析 ……………………30
3.5
改良後60-GHz無巴倫差動輸出倍頻器模擬與量測結
果 ………………………………………………………34
3.5.1 量測考量與架設 ………………………………34
3.5.2 模擬與量測之結果比較 ………………………37
3.6 總結 ……………………………………………………43
第四章 應用在94-GHz被動影像雷達之整合差動輸出倍頻器之94-GHz接收機前端電路 ………………45
4.1 研究動機與論文探討 …………………………………45
4.1.1 94-GHz頻段及其應用介紹 ……………………45
4.1.2 94-GHz接收機前端電路 ………………………46
4.2 改良後94-GHz接收機前端電路 ………………………50
4.2.1 94-GHz接收機前端電路架構 …………………50
4.2.2 94-GHz接收機前端電路設計流程 ……………55
4.3 改良後之94-GHz接收機前端電路之佈局實現 ………56
4.4 改良後之94-GHz接收機前端電路模擬結果 …………60
4.4.1 接收機前端電路模擬結果………………………60
4.5 改良後之94-GHz接收機前端電路量測考量…………63
4.5.1 量測考量與架設 ………………………………63
4.6 總結 ……………………………………………………65
第五章 結論與未來展望 ………………………………67
參考文獻 …………………………………………………69
參考文獻 [1] J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag., vol. 10, no. 3, pp. 104–112, May 2009.
[2] “Fixed radio systems: Characteristics and requirements for point-to-point equipment and antennas,” ETSI, Sophia Antipolis, France, ETSIEN 302 217-2-2 V2.0.0, Sep. 2012.
[3] Levinger, et al., “High-Performance E-Band Transceiver Chipset for Point-to-Point Communication in SiGe BiCMOS Technology,” IEEE Trans. Microw. Theory Techn., vol.64, no.4, pp. 1078-1087, Apr. 2016.
[4] Huang, et al.,” W-Band BPSK and QPSK Transceivers With Costas-Loop Carrier Recovery in 65-nm CMOS Technology,”IEEE J. Solid-State Circuits, vol.46, no.12, pp. 3033-3046, Dec. 2011.
[5] Ku, et al.,” A 77–81-GHz 16-Element Phased-Array Receiver With +/-50 degree Beam Scanning for Advanced Automotive Radars,”IEEE Trans. Microw. Theory Techn., vol.62, no.11, pp. 2823-2832, Nov. 2014.
[6] J. Lee, et al.,” A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,”IEEE J. Solid-State Circuits, vol.45, no.12, pp. 2746-2756, Dec. 2010.
[7] Jia, et al.,” A W-Band Injection-Locked Frequency Doubler Based on Top-Injected Coupled Resonator,”IEEE Trans. Microw. Theory Techn., vol.64, no.1, pp. 210-218, Jan. 2016.
[8] Feng, et al.,” A Current-Reused Injection-Locked Frequency Multiplication_Division Circuit in 40-nm CMOS,”IEEE Trans. Microw. Theory Techn., vol.61, no.4, pp. 1523-1531, Apr. 2013.
[9] Yeh, et al.,” A W_Band Wide Locking Range and Low DC Power Injection-Locked Frequency Tripler Using Transformer Coupled Technique,”IEEE Trans. Microw. Theory Techn., vol.61, no.2, pp. 860-870, Feb. 2013.
[10] C. N. Kuo, et al.,” A 60 GHz Injection-Locked Frequency Tripler With Spur Suppression,” IEEE Microw. Wireless Compon. Lett., vol.20, no.10, pp.560-562, Oct. 2010.
[11] J. Sharma, T. Dinc, and H. Krishnaswamy, “A 200GHz power mixer in 130nm-CMOS employing nonlinearity engineering,” in Proc. IEEE RFIC Symp., 2014, pp. 348-350.
[12] N. Sarmah, B. Heinemann, and U. R. Pfeiffer, “235-275 GHz (x16) frequency multiplier chains with up to 0 dBm peak output power and low DC power consumption,” in Proc. IEEE RFIC Symp., 2014, pp. 181-184.
[13] A. Alizadeh, M. Frounchi, and A. Medi, “A V-band MMIC doubler using a 4th harmonic mixing technique,” IEEE Microw. Compon. Lett., vol. 26, no. 5, pp. 355-357, May 2016.
[14] Zhou, et al., “A novel transformer-based mm-wave frequency doubler with enhanced output symmetry”, AICSP, 2014.
[15] Yang, et al., “Low power fully differential frequency doubler”, E.L., vol.39, no.19, Sep 2003 .
[16] Ye, et al.,” A High Efficiency E-Band CMOS Frequency Doubler With a Compensated Transformer-Based Balun for Matching Enhancement,” IEEE Microw. Wireless Compon. Lett., vol.26, no.1, pp. 40-42, Jan. 2016.
[17] M. Hossain, et al.,” A G-Band High Power Frequency Doubler in Transferred-Substrate InP HBT Technology,” IEEE Microw. Wireless Compon. Lett., vol.26, no.1, pp. 49-51, Jan. 2016.
[18] Lewark, et al.,” A Miniaturized Unit Cell for Ultra-Broadband Active Millimeter-Wave Frequency Multiplication,” IEEE Trans. Microw. Theory Techn., vol.62, no.6, pp. 1343-1351, June 2014.
[19] Sharma, et al.,”A 134 GHz +4 dBm frequency doubler at fmax in 130 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol.24, no.11, pp. 784-786, Nov. 2014.
[20] Lin, et al., “A 135-160 GHz balanced frequency doubler in 45 nm CMOS with 3.5 dBm peak power,” IEEE Microw. Wireless Compon. Lett., vol.24, no.11, pp. 784-786, Nov. 2014.
[21] Cetinoneri, et al.,” W-Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol.60, no.3, pp. 692-701, Mar. 2012.
[22] Chen, et al.,” A 36–80 GHz High Gain Millimeter-Wave Double-Balanced Active Frequency Doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol.19, no.9, pp. 572-574, Sep. 2009.
[23] C.-H. Li et al., “A 37.5-mW 8-dBm-EIRP 15.5°-HPBW 338-GHz terahertz transmitter using SoP heterogeneous system integration,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 470-480, Feb. 2015.
[24] Mitomo, et al., “A 2Gbs Throughput CMOS Transceiver Chipset with In-Package Antenna for 60GHz Short-Range Wireless Communication,” ISSCC Dig. Tech. Papers, pp. 230-231, Feb. 2013.
[25] Tsukizawa, et al., “A Fully Integrated 60GHz CMOS Transceiver Chipset Based on WiGigIEEE802.11ad with Built-In Self Calibration for Mobile Applications,” ISSCC Dig. Tech. Papers, pp. 230-231, Feb. 2013.
[26] Rappaport, et al., “State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications,” PIEEE, pp. 1390-1436, 2011.
[27] Peng, et al.,” A 94 GHz 3D Image Radar Engine With 4TX/4RX Beamforming Scan Technique in 65 nm CMOS Technology,” IEEE J. Solid-State Circuits, vol.50, no.3, pp. 656-668, Mar. 2015.
[28] Zhou, et al.,” A W-Band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems,” IEEE J. Solid-State Circuits, vol.46, no.2, Feb. 2011.
[29] Su, et al., “A 78-102 GHz Front-End Receiver in 90 nm CMOS Technology”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, Sep. 2011.
[30] D. F. Williams et al., “Calibration for millimeter-wave silicon transistor characterization,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 658-668, Mar. 2014.
[31] Sarkas et al., “Silicon-Based radar and imaging sensors operationg above 120 GHz,” IEEE MIKON , May. 2012.
指導教授 李俊興(Chun-Hsing Li) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明