博碩士論文 103521110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.238.184.78
姓名 陳信男(Xin-Nan Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 串聯及並聯陣列結構對準單模 850 nm光波段垂直共振腔面射型雷射之調制速度和輸出功率表現的增強
(Series and parallel quasi-single-mode 850 nm Vertical-Cavity Surface-Emitting Lasers Array with Enhanced Speed and Output Power Performances)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在我們的實驗中,展現了串聯及並聯高速垂直共振腔面射型雷射(VCSELs)陣列的操作,兩個結構相比於單顆操作的元件,都顯示出在輸出功率的提升,及其在最大調製速度(electrical-optical (E-O) bandwidth)上並沒有任何的退化,能夠得到速度沒有劣化的結果,最主要源自於我們特殊的氧化掏離(oxide-relief)技術,以及鋅擴散技術(Zn-diffusion),大大的釋放了RC限制的頻寬(RC-limited),有效降低微分電阻(differential resistance)及寄生電容( parasitic capacitance)。另外,把陣列中的VCSEL經由高密度排列,因其具有鋅擴散孔徑用於光的模態抑制(optical mode control),此結果可以大大降低輸出能量從我們的陣列結構耦合到標準的多模光纖(MMF)的損耗(coupling loss)。
相較於我們一般單顆的元件,並聯陣列結構在傳輸性能上有顯著的增強,並聯結構有著較大的眼緣(eye margin),較高的信噪比(signal-to-noise ratio),及擁有較高的數據傳輸量(44v.s.50Gbit/s)。根據我們的結構模擬技術,並聯陣列的增強是由於其內部阻抗(internal resistance)更接近於信號源的50Ω,另一方面,串聯的傳輸效能與之相比明顯的降低,這是由於其內部阻抗增加,使其元件與設備間的阻抗匹配也跟著增加的問題。
摘要(英) Parallel and series high-speed VCSEL array have been demonstrated in this work. Both structures show improvement in output power and have no degradation in its maximum modulation speed as compared to those of single reference. The observed invariant electrical-optical (E-O) bandwidth in our parallel and series array is mainly due to the wide RC-limited bandwidth of unit VCSEL with Zn-diffusion and oxide-relief aperture for reducing differential resistance and parasitic capacitance, respectively. Furthermore, by densely packing the single unit VCSEL, which has Zn-diffusion apertures for optical mode control, the increasing in coupling loss between the outputs from our array into a standard MMF can be minimized. Compared with reference unit VCSEL, the parallel VCSEL array shows a significant enhancement in transmission performance over 100 meter OM4 fiber, which includes a larger eye margin, a higher signal-to-noise ratio, and at a higher data rate (50 vs.44 Gbit/sec). By performing device modeling technique onto our devices, we can conclude that such improvement of parallel array is because that it has a value of internal resistance more close to the 50Ω signal source. On the other hand, the transmission performance of series array degrades significantly as compared to that of single reference due to the increase in its internal resistance and more serious impedance mismatch between device and signal source.
關鍵字(中) ★ 半導體雷射
★ 垂直共振腔面射型雷射
★ 光連結
關鍵字(英) ★ Semiconductor lasers
★ Vertical cavity surface emitting lasers
★ Optical Interconnect
論文目次 目 錄
摘 要 i
Abstract ii
致謝 iii
目 錄 iv
第一章 序論 1
1-1簡介 1
1-2數據中心(data center) 1
1-3 傳輸與阻抗匹配 3
1-4 串聯及並聯陣列結構 5
第二章 理 論 8
2-1 VCSEL的磊晶結構 8
2-2 鋅擴散於DBR 12
2-3 VCSEL的選擇性水氧化理論 16
2-4 水氧層掀離製作 18
2-5 水氧化系統 19
2-6 IR系統 20
2-7 發散角 21
第三章如何提升VCSEL高速及內部阻抗匹配24
3-1應力(strained)量子井 24
3-1-1量子井加入應力(strained)原理 24
3-1-2應力量子井可靠度(Reliability)的問題 26
3-1-3量子井的應力(strained)需求 28
3-1-4如何實現量子井摻雜15%銦(Indium) 29
3-2波長偏移量(detuning wavelength) 30
3-2-1藍移偏移量(blue-shift detuning) 30
3-2-2紅移偏移量(red-shift detuning) 32
3-3並聯操作陣列結構 33
第四章 實 驗 35
4-1 鋅擴散製程 35
4-2 水氣氧化 37
4-3 製作電極(P-metal 和N-metal) 41
4-4 金屬回火(Annealing)和平坦化 42
4-5 把每個元件絕緣(Isolation) 42
4-6 開洞(Via) 43
4-7 BCB製程 43
4-8 金屬線製程(Pad) 46
第五章 量測結果與討論 47
5-1量測系統 47
5-1-1.電流對電壓(I-V)的量測 47
5-1-2.光功率對電流(L-I)之量測 47
5-1-3.遠場(Far field)之量測系統 48
5-1-4.近場(Near field)投影之量測系統 48
5-1-5.頻譜(Spectrum) 之量測系統 49
5-1-6.頻寬(Bandwidth)之量測系統 49
5-1-7.眼圖(Eye pattern)之量測系統 50
5-2串聯元件 52
5-2-1元件布局圖(layout) 52
5-2-2 L-I-V特性曲線圖 53
5-2-3光頻譜(Optical spectra)比較 54
5-2-43dB頻寬(bandwidth)及元件模擬 55
5-2-5遠場量測(Far field)比較 56
5-3並聯元件 58
5-3-1元件布局圖(layout) 58
5-3-2L-I-V特性曲線圖 58
5-3-3光頻譜(Optical spectra)的比較 59
5-3-43dB頻寬(bandwidth)及元件模擬 60
5-3-5遠場量測(Far field)比較 62
5-3-6串聯元件及並聯元件大訊號眼圖(eye pattern) 63
5-3-7 光功率因素 65
5-4數據速率提升對眼圖的影響 66
5-4-1大訊號眼圖(eye pattern) 66
5-4-2大訊號眼圖傳輸 68
第六章 總結 69
Reference 70
參考文獻 [1] N. Savage, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug., 2002.
[2] Clint L. Schow. (2015. Oct 22) “Opportunities and Challenges for Photonics in Next Generation Data Centers, ” [online]. Available: http://iee.ucsb.edu/node/ 3024
[3] P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-Speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett., vol. 48, no. 18, Aug., 2012.
[4] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable High-CW-Power High-Speed 980-nm VCSEL Arrays,” IEEE J. of Quantum Electronics, vol. 46, pp. 1590-1596, Nov., 2010.
[5] P. Modh, S. Galt, J. Gustavsson, S. Jacobsson, and A. Larsson, “Linear Cascade VCSEL Arrays With High Differential Efficiency and Low Differential Resistance,” IEEE Photon. Technol. Lett., vol. 18, pp. 283-285, Jan., 2006.
[6] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[7] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1418, pp. 414-421, Nov., 1991.
[8] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[9] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, April, 1993.
[10] J. A. Van Vechten, “Intermixing of an AlAs-GaAs superlattice by Zn Diffusion ,” J. Appl. Phys. vol. 55, no. 10, pp.7082-7084, Oct., 1984.
[11] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion, ” Appl. Phys. Lett., vol. 38, no. 10, pp. 776-778 , May, 1981.
[12] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Tech., no. 4, pp. 841-846, 1989.
[13]陳志誠,“穩態單橫模和穩定極化的面射型雷射,” 國立台灣大學電機工程 學系博士論文, 民國90年.
[14] R. G. Hunsperger, “Integrated Optics: Theory and Technology”, IEEE J. Quantum Electron., vol. QE-19., no. 4, April, 1983.
[15] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlx As ,” Appl. Phys. Lett., vol 47, no. 11, pp.1193-1195, 1985.
[16] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[17] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec., 1965.
[18] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, Issue 11, pp. 5213-5219, Dec., 1992.
[19] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quant. Electron, vol. 3, no. 3, pp. 916-926, June, 1997.
[20] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no. 11, pp.1237-1239, Nov., 1995.
[21] N. Holonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett, vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[22] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937, June,1996.
[23] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, no.6 pp.740-742, June, 1996.
[24] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, Jan., 1995.
[25] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[26] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[27] 江嘉偉“應用在光連結高可靠度高速(>25Gbit/sec)850光波段的垂直共振腔雷射” 國立中央大學電機工程學系碩士論文, 民國103年.
[28] M. Grabherr, S. Intemann, S. Wabra, P. Gerlach, M. Riedl, R. King “25 Gbps and beyond: VCSEL development at Philips,” Proc. SPIE, vol. 8639, pp. 86390J-2, February, 2013.
[29] J. Guenter, B. Hawkins, R. Hawthorne, G. Landry, “Reliability of VCSELs for >25 Gb/s,” Proc. OFC 2014, San Francisco, CA, USA, pp. M3G.2, March, 2014.
[30] S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, and A. Haglund, A. Larsson, and A. Joel, “Active Region Design for High-Speed 850-nm VCSELs,” IEEE J. Quantum Electron., vol. 46, pp. 506-512, April, 2010.
[31] H. Nishimoto, M. Yamaguchi, I. Mito, and K. Kobayashi “High-Frequency Response for DFB LD due to a Wavelength Detuning Effect,” IEEE/OSA Journal of Lightwave Technology, vol. LT-5, no. 10, pp. 1399-1402 , Oct., 1987.
[32] H. L. Member, C. Blaauw, and Toshihiko Makino, Member, “Single-Mode Operation Over a Wide Temperature Range in 1.3 pm InGaAsP/InP Distributed Feedback Lasers,” Journal of Lightwave Technology, vol. 14, no. 5, May, 1996.
[33] M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 312-320, March/April, 2004.
[34] K. Doi , T. Shindo, M. Futami, T. Amemiya, N. Nishiyamal, and S. Arail, “Thermal Analysis of Self-heating Effect in GaInAsP/InP Membrane DFB Laser on Si Substrate,” IEEE Photonic Society Meeting 2012, San Francisco, CA, USA, Sep., 2012.
[35] Hui Li, Philip Wolf, Philip Moser, Student Member, Gunter Larisch, Alex Mutig, A. Lott, Senior Member, and Dieter H. Bimberg, “Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs,” IEEE J. Quantum, Electron., vol. 50, no. 8, pp. 613-621, August, 2014.
[36] J.-W. Shi, C. -C. Chen, Y .-S. Wu , S.- H. Guol, Chihping Kuo, and Ying-Jay Yang,“High-Power and High-Speed Zn-Diffusion Single Fundamental -Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonic. Tech .Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[37] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[38] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, High speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2016-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明