博碩士論文 103521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:100.24.122.228
姓名 許翰維(Han-Wei Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可具任意通帶之可調式多工器
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器
★ 基於散佈式耦合饋入架構之可開關式帶通濾波器★ 共平面波導饋入之寬頻雙圓極化天線
★ 基於多共振路徑所設計之印刷式多頻帶天線★ 四通道可切換式帶通濾波器之研究
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
★ 可調式雙模態帶通濾波器之研究★ 使用步階式阻抗共振器實現於微小化準八木天線設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文中提出結合步階式阻抗共振器(Stepped-impedance resonator, SIR)以及散佈式耦合饋入技術(Distributing coupling technique)設計而成之多頻帶多工器。
因應於多頻段應用的要求上,步階式阻抗共振器相較於傳統均勻阻抗共振器具有縮小電路尺寸之功能,較為適合使用於多頻帶電路上。為了進一步拓展其止帶,故採用不同阻抗比例以及電氣長度比例之步階式阻抗共振器與非對稱饋入結構。由於散佈式耦合饋入技術其具有低負載效應,不只能夠有效增加電路的設計自由度外還能減少其設計上之難度。除此之外,通過適當控制二極體位於步階式阻抗共振器上之位置,可以得到具有可開關多頻帶多工器之響應。基於此種設計結構所設計之多頻帶多工器與可開關多頻帶多工器具有寬止帶、複雜頻率響應之特性。
在本論文中所設計之多頻帶多工器以及可開關多頻帶多工器由數個散佈式耦合饋入線、具寬止帶之帶通濾波器以及二極體結構組成,於本論文中將有其電路所有的設計原理、模擬結果與實作結果的探討。
摘要(英) The thesis presents multi-channel multiplexer and switchable multi-channel multiplexer using stepped-impedance resonator and distributed coupling technique.
For the requirement of multi-band applications, the stepped-impedance resonators are more suitable for multiplexer than conventional impedance resonators. In order to widen stopband, the stepped-impedance resonators with different impedance ratio and electrical length ratio are employed. By the low loading effect of distributing coupling technique, it can not only increase the freedom of design but also reduce the difficulty effectively. In addition, by properly locating the pin diode to the stepped-impedance resonator, the switchable multi-band multiplexer can be achieved. Base on this structure, multi-channel multiplexer and switchable multi-channel multiplexer features wide stopband, high isolation, flexibly frequency response, and compact circuit size.
The multi-band multiplexer and switchable multi-band multiplexer consists of distributed coupling line, bandpass filter with wide stopband, and pin diode. All of the designs, simulations, and measurements are presented and discussed in this thesis.
關鍵字(中) ★ 多工器
★ 可開關
★ 步階式阻抗共振器
★ 散佈式耦合
★ 止帶
關鍵字(英) ★ Multiplexer
★ Switchable
★ Stepped-impedance resonator
★ Distributing coupling
★ Stopband
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 研究動機 1
1-2 文獻參考 2
1-3 論文架構 5
第二章 使用散佈式耦合饋入技術與步階式阻抗共振器架構所設計之多頻帶多工器 6
2-1 使用散佈式耦合饋入技術設計與步階式阻抗共振器架構之具寬止帶且高自由度之帶通濾波器 6
2-1.1 步階式阻抗共振器其基本原理 7
2-1.2 使用非對稱饋入結構實現寬止帶 9
2-1.3 耦合饋入結構之分析 12
2-1.4 基於散佈式饋入技術之帶通濾波器 13
2-2 基於此架構所設計之六頻帶三工器 17
2-2.1 六頻帶三工器結構 17
2-2.2 六頻帶三工器之設計 18
2-2.3 六頻帶三工器之電路實作與量測結果 23
2-3 基於此架構所設計之八頻帶四工器 26
2-3.1 八頻帶四工器之電路架構 26
2-1.2 八頻帶四工器之設計 27
2-1.3 八頻帶四工器之電路實作與量測結果 31
2-4 結論 34
第三章 可開關之多頻帶多工器 36
3-1 可開關之多頻帶多工器其設計原理 36
3-1.1 可開關之帶通濾波器架構 36
3-1.2 可開關之帶通濾波器其響應分析 39
3-2 可開關之四頻帶雙工器之設計 42
3-2.1 可開關之四頻帶雙工器架構 42
3-2.2 可開關四頻帶雙工器之電路實作與量測結果 46
3-3 可開關之六頻帶三工器 50
3-3.1 可開關之六頻帶三工器架構 50
3-3.2 可開關六頻帶三工器之電路實作與量測結果 55
3-4 結論 67
第四章 結論 68
參考文獻 69
參考文獻 [1] Y.-L. Lu, C.-Z. Hua, and T.-J.Liu, “A novel dual-band bandpass filter C-section loaded resonators,” in Proc Asia-Pacific Microwave Conf., vol. 2, 2015, pp. 1-3.
[2] Y.-C. Chang, C.-H. Kao, M.-H. Weng, and R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780–782, Dec. 2009.
[3] L. Gao, X. Y. Zhang, K. X. Wang, and B.-J. Hu, “Miniaturized dual-band bandpass filter using quarter-wavelength stepped-impedance resonators,” in Proc. Asia-Pacific Microw. Conf., 2012, pp. 238-240.
[4] S. Sun, “A dual-band bandpass filter using a single dual-mode ring resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 298–300, Jun. 2011.
[5] M. Doan, W. Che, and W. Feng, “Novel compact dual-band bandpass filter with multiple transmission zeros and good selectivity,” in Proc. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012, pp. 1-4.
[6] F. Chen and Q. Chu, “Design of compact tri-band bandpass filters using assembled resonators,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 165–171, Jan. 2009.
[7] J. Xu, W. Wu, and G. Wei, “Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator,” IEEE Trans Microw. Theory Tech., vol. 62, no. 12, pp. 3909-3919, Dec. 2015.
[8] S. Zhang, and L. Zhu, “Compact tri-band bandpass filter based on quarter-wavelength resonators with U-folded coupled-line,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 258-260, May. 2013.
[9] M. Doan, W. Che, and C. D. Pham, “Novel Compact tri-band bandpass filters using square ring short stub loaded resonators,” in Proc. Int. Conf. on Advanced Technologies for Communications., pp. 55-57. Oct. 2012.
[10] H-W. Wu, G.-S. Chen, and Y.-W. Chen, “New compact triple-passband bandpass filter using multipath-embedded stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 3, pp. 158-160, Mar. 2014.
[11] X. Lai, C.-H. Liang, H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 265–267, May. 2010.
[12] V. Radonić, and V. Crnojević-Bengin, “Compact multilayer dual-band and tri-band bandpass filters using ground spiral resonators,” TELSIKS, vol. 1, pp. 261-264, Oct. 2013.
[13] T. Yang, P.-L. Chi, and T. Itoh, “High isolation and compact diplexer using the hybrid resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 551–553, Oct. 2010.
[14] M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583–585, Nov. 2011.
[15] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator section for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945–1952, May. 2006.
[16] W. Wang, Q. Zhang, X. Lin, F. Wang, and W. Liao, “ Diplexer with high isolation using multi-order resonances,” in Proc Asia-Pacific Microwave Conf., vol. 3, 2015, pp. 1-3.
[17] J.-K. Xiao, M. Zhu, Y. Li, L. Tian, and J.-G. Ma, “High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling,” IEEE Microw. Wireless Compon. Lett., vol. 25 , no. 12, pp. 781-783, Dec. 2015.
[18] M. Karlsson, P. Håkansson, and S. Gong, “A frequency triplexer for ultra-wideband systems utilizing combined broadside- and edge-coupled filters,” IEEE Trans. Advanced Packaging., vol. 31, no. 4, pp. 794–801, Nov. 2008.
[19] L.-Z. Zhang, B. Wu, and F. Qiu, “Compact six-band triplexer using stub-loaded stepped impedance resonators,” Electron. Lett., vol. 50, no. 16, pp. 1143–1145, July 2014.
[20] H.-W. Wu, K. Shu, R.-Y. Yang, M.-H. Weng, J.-R. Chen, and Y.-K. Su, “Design of a compact microstrip triplexer for multiband applications,” in Proc. Eur. Microw. Conf., 2007, pp. 834-837.
[21] F.-C. Chen, J.-M. Qiu, H.-T. Hu, Q.-X. Chu, and M. J. Lancaster, “Design of microstrip lowpass-bandpass triplexer with high isolation,” IEEE Microw. Wireless Compon. Lett., vol. 25 , no. 12, pp. 805-807, Dec. 2015.
[22] S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol.21, no.4, pp.197–199, Apr. 2011.
[23] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1818−1820, Oct. 2001.
[24] P.-Y. Chang, Y.-S. Lin, “Electronically switchable microstrip bandpass filter with good selectivity,” in Proc. Asia-Pacific Microw. Conf., 2011, pp. 1158-1574.
[25] J. Xu, “A microstrip switchable filter with four operating modes,” IEEE Microw. Wireless Comp. Lett., vol. 26, no. 2, pp. 101–103, Feb. 2016.
[26] S.-F. Chao, C.-Y. Kuo, W.-C. Lin, and W.-R. Li, “A dual-band switchable bandpass filter using connected-coupling mechanisms,” in Proc. 44th Eur. Microw. Conf., 2014, pp. 941-944.
[27] Z. Brito-Brito, I. Llamas-Garro, G. Navarro- Muñoz, J. Perruisseau-Carrier, and Lluis Pradell, “UMTS-WiFi switchable bandpass filter,” in Proc. 39th Eur. Microw. Conf., 2009, pp. 125-128.
[28] B. Lui, F. Wei, and X. Shi, “Switchable bandpass filter with two-state frequency responses,” Electron. Lett., vol. 47, no. 1, pp. 40–41, Jan 2011.
[29] J. Xu, “Compact switchable bandpass filter and its application to switchable diplexer design,” IEEE Microw. Wireless Comp. Lett., vol. 26, no. 1, pp. 13–15, Jan. 2016.
[30] M. Makimoto and S. Yamashita, “Bandpass filter using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
[31] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078-1085, July. 1997.
[32] K.-W. Hsu, J.-H. Lin, W.-C. Hung, and W.-H. Tu, “Design of compact quad-band bandpass filter using semi-lumped resonators,” in IEEE MTT-S Int. Dig., Seattle, WA, USA, Jun. 2013, pp. 1–4.
[33] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.
指導教授 凃文化(Wen-Hua Tu) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明