博碩士論文 103521118 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.212.90.230
姓名 盧龍俊(Lung-Chun Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器
(Broad passband and wide stopband diplexers using asymmetric stepped impedance resonator)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 基於散佈式耦合饋入架構之可開關式帶通濾波器★ 共平面波導饋入之寬頻雙圓極化天線
★ 基於多共振路徑所設計之印刷式多頻帶天線★ 微小化倍頻壓抑直交分合波器之研製
★ 可繞式小型偶極天線之研製★ 使用多重模態共振器實現多功能帶通濾波器
★ 應用於Radio-over-Fiber系統之超高速微波光子發射器★ 使用長饋入線架構研製小型且具有高隔絕度的多工器
★ 具有寬截止頻帶的帶通濾波器之研製★ 可調式雙模態帶通濾波器之研究
★ 使用步階式阻抗共振器實現於微小化準八木天線設計★ 利用步階式阻抗共振器之多頻與寬頻共平面波導饋入槽孔偶極天線設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一般常用設計多工器的方法多為散布式耦合的饋入技術來設計多頻帶的多工器,因為這種設計方法不僅擁有較小的負載效應且不需要做額外的匹配電路來設計多頻帶的電路,但是因隨著多工器通帶的增加其面積亦增加,因此,提出利用直接饋入非對稱步階式阻抗共振而設計的寬通帶寬止帶之寬頻帶的濾波器,使用各種不同的半波長非對稱的步階式阻抗,利用非對稱步階式阻抗的阻抗比及電氣長度比可以控制共振器高階諧波的特性,故選定適當的比例將高階諧波的頻率控制在較低的頻率,再利用混合式耦合撐起寬頻通帶,接著用此濾波器架構當作基本單一的電路延伸設計出雙工器,並比較在耦合共振路徑中的地方設計一個非耦合的路徑與傳統一般平行耦合傳輸線的不同,並分析其傳輸極點、電流分析圖及負載效應,最後再基於此種設計及架構所設計出的雙工器具有寬頻帶寬止帶的特性,其設計出的通帶可達到50 %左右,20 dB止帶可達到7.0倍的最低操作頻率且在隔離度的部分可以達到28 dB以上,並利用實作電路驗證設計的方法是有效的 ◦
摘要(英) In general, the requirement of multiplexers applications, almost all of the multiplexers were used distributing coupling technique to design. Due to the low loading effect from distributing coupling technique, the circuits can obtain many channels without need of complicated matching network. Therefore, thesis presents wideband and wide stopband bandpass filter using tapping technique and asymmetric stepped impedance resonator. By using various dissimilar half-wavelength asymmetric stepped-impedance resonators (SIRs) and shunt open-circuited stubs, a wide stopband is achieved. The higher order mode frequencies can be determined by property choosing a suitable combination of impedance ratio and electrical length ratio of the asymmetric SIR. Parallel-coupled line with a meandering uncoupled section can enhance spurious suppression. And analyze transmission pole, Current distribution and load effect. Finally, on the basis of this structure of the diplexer with wideband and wide stopband characteristics, the bandwidth is reaches about 50 %. The 20-dB stopband extends up to 7.0 f0 the lowest operation center frequency and the isolation is better than 28 dB and the. Based on the design concept, the proposed diplexer is designed and fabricated with good agreement between simulations and measurements.
關鍵字(中) ★ 雙工器
★ 非對稱步階式阻抗
關鍵字(英) ★ diplexer
★ asymmetric stepped-impedance resonator
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 VI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻參考 2
1.3 論文架構 5
第二章 步階式阻抗共振分析 6
2-1 簡介 6
2-2 步階式阻抗共振器的分析 6
2-2.1半波長步階式阻抗共振器 7
2-2.2半波長非對稱步階式阻抗共振器 11
第三章 寬通帶之寬頻雙工器 14
3.1 簡介 14
3.2 半波長非對稱步階式阻抗共振器設計寬頻帶通濾波器 14
3-2.1半波長對稱架構的非對稱步階式阻抗共振器設計帶通濾波器 15
3-2.2非對稱架構的半波長非對稱步階式阻抗共振器設計帶通濾波器 19
3.3 半波長非對稱步階式阻抗共振器之傳輸極點分析 21
3.4 半波長非對稱步階式阻抗共振器設計寬頻雙工器 22
3.5 負載效應分析 27
第四章 寬通帶寬止帶之寬頻雙工器 30
4.1 簡介 30
4.2 半波長寬通帶寬止帶之寬頻帶通濾波器設計 30
4.3 蜿蜒架構非對稱步階式阻抗共振器之傳輸極點 33
4.4 蜿蜒架構非對稱步階式阻抗共振器設計雙工器 35
4.5 負載效應分析 41
4.6 改良蜿蜒架構非對稱步階式阻抗共振器設計雙工器 44
第五章 結論 48
參考文獻 49
參考文獻



[1] D. M. Pozar, Microwave Engineering, 3rd ed. New York, NY, USA Wiley, 2005.
[2] J.-S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2001.
[3] C.-Y. Chang and T. Itoh, “A modified parallel-coupled filter structure that improves the upper stopband rejection and response symmetry,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 2, pp. 310-314, Feb. 1991.
[4] J.-T. Kuo, S.-P. Chen, and M. Jiang, “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 400-442, Feb. 2003.
[5] T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, Leticia P.-C., M. Sorolla, and M. Guglielmi, “Microstrip wiggly-line bandpass filters with multispurious rejection,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 531-533, Nov. 2004.
[6] T. Lopetegi, M. A. G. Laso, J. Hernández, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “wiggly-line” filters with spurious passband suppression,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1817-1822, Sep. 2001.
[7] S. Sun and L. Zhu, “Periodically non-uniform coupled microstrip-line filters with harmonic suppression using transmission zero reallocation, “IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1593-1598, May 2005.
[8] J.-T. Kuo and M.-H. Wu, “Corrugated parallel-coupled line bandpass filters with multispurious suppression,” IET Microw. Antennas Propag., vol. 1, no. 3, pp. 718–722 Mar. 2007.
[9] J.-S. Park, J.-S. Yun, and D. Ahn, “A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance, “IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037-2043, Sep. 2002.
[10] J. García-García, F. Martín, F. Falcone, J. Bonache, J. D. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marqués, “Microwave filters with improved stopband based on sub-wavelength resonators, ” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1997-2006, Jun. 2005.
[11] M. K. Mandal and S. Sanyal, “Design of wide-band, sharp-rejection bandpass filters with parallel-coupled lines,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 597-599, Nov. 2006.
[12] M. A. Sanchez-Soriano G. Torregrosa-Penalva, and E. Bronchalo, “Multispurious suppression in parallel-coupled line filters by means of coupling control,” IET Microw. Antennas Propag., vol. 6, no. 11, pp. 1269–1276, Jun. 2012.
[13] M. Makimoto, and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
[14] J.-T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554-1559, May 2003.
[15] W. M. Fathelbab, and M. B. Steer, “Parallel-coupled line filters with enhanced stopband performances,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3774-3781, Dec. 2005.
[16] C.-L. Hsu, and J.-T. Kuo, “A two-stage SIR bandpass filter with an ultra-wide upper rejection band,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 34-36, Jan. 2007.
[17] S.-C. Lin, P.-H. Deng, Y.-S. Lin, C.-H. Wang, and C. H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1011-1018, Mar. 2006.
[18] S.-C. Weng, K.-W. Hsu, and W.-H. Tu, “Switchable and high-isolation diplexer with wide stopband,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 373-375, Jun. 2014.
[19] S.-C. Weng, K.-W. Hsu, and W.-H. Tu, “Microstrip bandpass single-pole quadruple-throw switch and independently switchable quadruplexer,” IET Microw. Antennas Propag., vol. 8, no. 4, pp. 244–254, Apr. 2014.
[20] H. Liu, B. Ren, S. Li, X. Guan, P. Wen, X. Xiao, and Y. Peng, “High-temperature superconducting bandpass filter using asymmetric stepped-impedance resonators With wide-stopband performance, ” IEEE Transactions on Applied Superconductivity, vol. 25, NO. 5, Oct. 2015.
[21] C. H. Kim, and K. Chang, “Wide-stopband bandpass filters using asymmetric stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 69-71, Feb. 2013.
[22] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[23] S. Sun, and L. Zhu, “Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440-442, Aug. 2006.
[24] Z. Shang, X. Guo, B. Cao, B. Wei, X. Zhang, Y. Heng, G. Suo, and X. Song, “Design of a superconducting ultra-wideband (UWB) bandpass filter with sharp rejection skirts and miniaturized size, ” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 72-74, Feb. 2013.
[25] D. Chen, H. Bu, L. Zhu, and C. Cheng, “A differential-mode wideband bandpass filter on slotline multi-mode resonator with controllable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, pp. 28-34, Jan. 2015.
[26] B. Mohammadi, A. Valizade, J. Nourinia, and P. Rezaei, “Design of a compact dual-band-notch ultra-wideband bandpass filter based on wave cancellation method,” IET Microw. Antennas Propag., vol. 8, no. 4, pp. 1–9, Apr. 2014.
[27] Q.-X. Chu, X.-H. Wu, and X.-K. Tian, “Novel UWB bandpass filter using stub-loaded multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 403-405, Aug. 2011.
[28] H.-W. Deng, Y.-Y. Zhao, L. Zhang, X.-S. Zhang, and S.-P. Gao, “Compact quintuple-mode stub-loaded resonator and UWB filter,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 438-440, Aug. 2010.
[29] Y.-C. Chang, C.-H. Kao, and M.-H. Weng and R.-Y. Yang, “Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 770-772, Dec. 2008.
[30] M.-L. Chuang, and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583-585, Nov. 2011.
[31] Y.-S. Lin, P.-C. Wang, C.-W. You, and P.-Y. Chang, “New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3417-3426, Dec. 2010.
[32] C.-F. Chen, T.-Y. Huang, and C.-P. Chou and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945-1952, May 2006.
[33] P.-L. Chi, and T. Yang, “Novel 1.5-2.4 GHz tunable single-to-balanced diplexer,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 10, pp. 783-785, Oct. 2016.
[34] M.-H. Weng, C.-Y. Hung, and Y.-K. Su, “A hairpin line diplexer for direct sequence ultra-wideband wireless communications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 519-521, Jul. 2007.
[35] K. F. Chang, and K. W. Tam, “Miniaturized cross-coupled filter with second and third spurious responses suppression,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 122-124, Fed. 2005.
[36] M.-H. Weng, H.-W. Wu, and R.-Y. Yang, “High spurious suppression of the dual-mode patch bandpass filter using defected ground structure,” IEICE Electric Lett, vol. E87-C, no. 10, pp. 1738-1740, Oct. 2004.
[37] R.-Y. Yang, M.-H. Weng, and H.-W. Wu, “Dual-mode ring bandpass filter using defected ground structure with wider stopband,” IEICE Electric Lett, vol. E87-C, no. 12, pp. 2150-2156, Dec. 2004.
指導教授 凃文化(Wen-Hua Tu) 審核日期 2017-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明