博碩士論文 103522012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.198.165.74
姓名 李祁晉(CHI-JIN LEE)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 影像特徵匹配用於室內定位
(Image Feature Point Matching for Indoor Positioning)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-1-16以後開放)
摘要(中) 隨著科技的日新月異與智慧型手機的普及,人們對於身心障礙人士的生活便利性考量,增加許多輔助設備,方便攜帶的設備例如智慧型手機或平板電腦是每人生活必備,但應用程式較少對視障人士或是老年人的方便性做考量。
本系統應用在室內環境得知使用者當下位置並規劃路線導航,透過影像特徵匹配技術去確認出正確位置與方向,目的是幫助視障人士或是老年人提供協助,導航到目的地,另外也可以使用在機器人的定位方式,以影像的方式去做位置與方向的定位。
本系統提出使用智慧型手機鏡頭擷取影像並從資料庫中去比對出影像最為相似的地點,傳回使用者目前的位置,使用者可以簡單地得知位置附近有用的資訊,例如廁所位置或是電梯位置,協助使用者規劃路線。
本論文使用Scale-invariant feature transform(SIFT)特徵,藉由影像特徵與預先建立完成的場景影像特徵資料庫來做匹配,使用FLANN(Fast Library for Approximate Nearest Neighbors)建立多棵隨機K-D樹(Randomized K-D tree),K-D樹可以將SIFT特徵描述子建立索引的方式加快特徵配對的效率。經實驗結果,本論文使用的方法可以達到良好的可靠度。
摘要(英) With the development of technology and the popularity of smart phones, people have become more considerate about the convenience in life of the disabilities and thus add lots of assistive equipment. Portable equipment such as smart phones and tablet are daily necessities for most of the people. However, there are few applications that are designed for the visual impairments and the elders.
The proposed system can be used indoor to get the location of the user and plan the path. Via matching the image features, it will recognize where the user is. The purpose of this is to help the visual impairments or the elders to navigate to their destinations. In addition, it can also use robot to get the position by matching image features.
The proposed system uses images captured from smart phones and are compared with database, then it will return the most similar position back to the user. User then can obtain some useful information of the surroundings such as the location of toilet or elevator, which will help user planning the path to destinations.
Scale-invariant feature transform(SIFT) is used in this thesis. Via image features matching with pre-established scenes image features database. FLANN(Fast Library for Approximate Nearest Neighbors) is applied to build randomized k-d trees. The k-d tree can create an index for SIFT`s descriptor, which can speed up feature matching. Experimental results in the proposed method can achieve a good feasibility.
關鍵字(中) ★ SIFT
★ 影像配對
★ K-D樹
★ FLANN
關鍵字(英) ★ SIFT
★ image matching
★ K-D tree
★ FLANN
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 6
Chapter 2 特徵方法相關研究 8
2.1 SIFT(Scale-invariant feature transform) 8
2.1.1 尺度空間建立 8
2.1.2 檢測極值點 12
2.1.3 確定特徵點位置 13
2.1.4 特徵點方向 13
2.1.5 特徵點描述子 14
Chapter 3 系統流程 16
3.1 系統說明 16
3.2 影像特徵匹配與驗證流程 17
3.2.1 FLANN建立隨機K-D TREES 18
3.2.2 最近鄰居特徵匹配 23
3.2.3 RATIO相似度驗證 27
3.2.4 場景搜尋 28
3.2.5 場景異常部分 29
Chapter 4 實驗結果 33
4.1 實驗環境 33
4.2 結果與討論 33
Chapter 5 結論與未來研究方向 44
參考文獻 45
參考文獻 [1] D.G. Lowe. "Distinctive image features from scale-invariant keypoints." International journal of computer vision, 2004.
[2] Lazebnik, Svetlana, Cordelia Schmid and Jean Ponce. "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories." 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006.
[3] J.L. Bentley. "Multidimensional binary search trees used for associative searching." Communications of the ACM, 1975.
[4] Silpa-Anan, Chanop, and Richard Hartley. "Optimised KD-trees for fast image descriptor matching." IEEE Conference on Computer Vision and Pattern Recognition, 2008.
[5] Muja, Marius, and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration." VISAPP, 2009.
[6] Fischler, Martin A and Robert C. Bolles. "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography." Communications of the ACM, 1981.
[7] D.G.Lowe, "Distinctive image features from scale-invariant keypoints." International journal of computer vision, 2004.
[8] Brown, Matthew and David G. Lowe. "Automatic panoramic image stitching using invariant features." International journal of computer vision, 2007.
[9] Harris, Chris and Mike Stephens. "A combined corner and edge detector." In Fourth Alvey Vision Conference, 1988.
[10] H. Bay, A. Ess, T. Tuytelaars and L. V. Gool. " SURF: Speeded Up Robust Features." Computer vision and image understanding, 2008.
[11] Crow Franklin. "Summed-area tables for texture mapping." In Proceedings of SIGGRAPH, 1984.
[12] E. Rublee, V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or SURF." 2011 IEEE International Conference on Computer Vision (ICCV), 2011.
[13] Leutenegger, Stefan, Margarita Chli and Roland Y. Siegwart. "BRISK: Binary robust invariant scalable keypoints." 2011 International conference on computer vision, 2011.
[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. "Brief: Binary robust independent elementary features." European conference on computer vision, 2010.
[15] Rosten Edward and Tom Drummond. "Machine learning for high-speed corner detection." In European Conference on Computer Vision, 2006.
[16] J. Hsieh, C. Chuang; S. Alghyaline, H. Chiang and C. Chiang. "Abnormal Scene Change Detection From a Moving Camera Using Bags of Patches and Spider-Web Map." IEEE Sensors Journal, vol.15, no.5, pp.2866-2881, May 2015.
[17] Zhang H, Shi Z, Pang K, Jia Y and Luo T. "A real-time image stitching method based on memory space conversion." 2015 8th International Congress on Image and Signal Processing (CISP), 2015.
[18] A. D. Koutsou, F. Seco, A. R. Jimenez, J. Roa, J. Ealo, C. Prieto, and J. Guevera. "Preliminary localization results with an RFID based indoor guiding system." IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007, 2007.
[19] Seco Fernando, Antonio R. Jimenez and Xufei Zheng. "RFID-based centralized cooperative localization in indoor environments." 2016 International Conference on IEEE Indoor Positioning and Indoor Navigation (IPIN), 2016.
[20] F. Lassabe , P. Canalda , P. Chatonnay and D. Charlet. "Refining WiFi indoor positioning renders pertinent deploying location-based multimedia guide." Proceedings of the 20th International Conference on Advanced Information Networking and Applications, p.126-132, April 2006.
[21] Narzullaev Anvar, and Hasan Selamat Mohd. "Wi-Fi signal strengths database construction for indoor positioning systems using Wi-Fi RFID." 2013 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 1-5, Sep 2013.
[22] M. Cypriani, F. Lassabe, P. Canalda and F. Spies. "Open wireless positioning system: a Wi-Fi-based indoor positioning system." In Vehicular Technology Conference (VTC), Fall 2009.
[23] Y. Li, Y. Zhuang, H. Lan, P. Zhang, X. Niu and N.El-Sheimy "WiFi-aided magnetic matching for indoor navigation with consumer portable devices." Micromachines, vol. 6, no. 5, p. 747–764, 2015.
[24] PN.Yianilos. "Data structures and algorithms for nearest neighbor search in general metric spaces." Fourth Ann.ACM-SIAM Symp. Discrete Algorithms, Vol. 93. No. 194. 1993.
[25] J.S. Beis and D.G. Lowe. "Shape indexing using approximate nearest-neighbour search in high-dimensional spaces." In 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997. Proceedings., pages 1000–1006,1997.
[26] Ran, Lisa, Sumi Helal and Steve Moore. "Drishti: an integrated indoor/outdoor blind navigation system and service." Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications, 2004.
[27] Helal, Abdelsalam, Steven Edwin Moore and Balaji Ramachandran. "Drishti: An integrated navigation system for visually impaired and disabled." Fifth International Symposium on Wearable Computers, 2001.
指導教授 范國清 莊啟宏 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明