博碩士論文 103522024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:35.175.179.52
姓名 陳俊達(Chun-Da Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 市區監控影像之十字路口感興趣區域自動偵測與車流估計
(Automatic Region of Interest Detection on Cross Roads and Traffic Flow Estimation in Urban Surveillance Videos)
相關論文
★ 以單一攝影機實現單指虛擬鍵盤之功能★ 基於視覺的手寫軌跡注音符號組合辨識系統
★ 利用動態貝氏網路在空照影像中進行車輛偵測★ 以視訊為基礎之手寫簽名認證
★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測★ 影像中賦予信任等級的群眾切割
★ 航空監控影像之區域切割與分類★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較
★ 以視覺為基礎之強韌多指尖偵測與人機介面應用★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計
★ 影像特徵點匹配應用於景點影像檢索★ 自動感興趣區域切割及遠距交通影像中的軌跡分析
★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測★ Analysis of the Performance of Different Classifiers for Cloud Detection Application
★ 全天空影像之雲追蹤與太陽遮蔽預測★ 在全天空影像中使用紋理特徵之雲分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2019-7-20以後開放)
摘要(中) 車流量偵測一直是智慧型運輸系統領域中很重要的議題,研究目前實際在使用的方法,通常會在各個路口架設硬體感測器或攝影機,或是像google map取得使用者手機的GPS資訊即時統計車流量資訊。而在學術領域方面,多年來已經有許多關於影像監控的研究,針對不同場景分析各種道路資訊,例如對國道影像或是單一路口的車道場景。但是目前利用攝影機監控的作法,常常會因為攝影機架設的角度及高度,而局限住監控的範圍。因此本篇論文希望將監控的範圍拉廣,從較廣的範圍能同時獲得更多跟道路有關的影像資訊。
本篇論文希望監控的範圍不僅針對單一道路,而是針對整個路口甚至多路口,希望用一台監控攝影機,即能監控範圍較廣之道路場景,並獲得各路口之車流量資訊。因此本篇論文提出一個較彈性的系統架構,自動偵測場景中十字路口的位置,並定義偵測區域,估測區域中車流量。希望攝影機架好之後便能夠自動偵測場景。
因此本篇論文偵測場景中的車輛前景,並根據前景資訊尋找道路區域。藉由道路區域的輪廓獲得直線特徵,並利用直線特徵尋找可能出現路口的位置,評估每個路口的可能性。最後利用路口資訊尋找相對應的感興趣區域,作為車流量估計的範圍。並利用一個彈性的車流估計模型計算該範圍中的車流量。由於本篇論文中的監控範圍較廣,場景內的車輛較小,因此在擷取車輛資訊的過程會因為車輛過小或車輛不明顯而偵測不到該車輛,在偵測的過程我們也嘗試從感興趣區域中擷取有效的特徵資訊,以改善找不到車輛前景的情形。
最後由實驗結果可以看出,本篇論文所提出的系統能夠正確的偵測場景中的十字路口區域,並在車流估計的結果也得到了不錯的誤差率,達到單一攝影機能夠偵測多路口車流之目的。
摘要(英) In this thesis, we propose a flexible traffic flow estimation system for urban surveillance videos. In recent years, there are many methods for traffic flow detection in urban scenes. However, many of them can only deal with single lane scenario. The goal of the proposed system is to automatically deal with the traffic flow estimation not only for single lane, but also for multiple crossroads. The proposed system can automatically detect the region of interests in the urban scenes. Then, the traffic flow information can be extracted from the segmented region of interest.
We detect the foreground regions of vehicles and use the information to detect lane regions. Then, we find the straight lines by the contours of lane regions and use these lines to find the regions of crossroads. Finally, we evaluate these regions to choose the appropriate ones and extend these regions to define the region of interest of traffic flow estimation. Furthermore, we construct effective features in the region of interest instead of foreground extraction. The proposed method is tested on a challenging experimental dataset. Experimental results show that we can find the crossroad regions appropriately and achieve good performance of the traffic flow estimation.
關鍵字(中) ★ 車流量
★ 前景偵測
★ 市區場景
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 3
1.3 系統流程 5
1.4 論文架構 9
第二章 自動偵測十字路口及感興趣區域 10
2.1 道路區域偵測 11
2.1.1 前景偵測 11
2.1.2 過濾影像雜訊 12
2.1.3 累積前景以及輪廓偵測 16
2.2 十字路口偵測 17
2.2.1 Hough Line偵測 17
2.2.2 Hough Line篩選 18
2.2.3 十字路口區域偵測 20
2.3 感興趣區域偵測 23
2.3.1 車流方向偵測 23
2.3.2 切割感興趣區域 24
第三章 市區監控影像之車流估計 26
3.1 感興趣區域內車輛估計 27
3.1.1 感興趣區域內之車輛偵測 27
3.1.2 特徵擷取之迴歸模型辨識車輛數 30
3.2 車流量估計 31
3.2.1 過濾雜訊 32
3.2.2 車流量估計模型 32
第四章 實驗結果與比較 38
4.1 實驗環境與實驗資料 38
4.2 實驗結果與數據分析 41
4.2.1 感興趣區域偵測結果 41
4.2.2 迴歸分析之特徵比較 44
4.2.3 車流估計模型比較 47
第五章 結論與未來研究方向 55
參考文獻 57
參考文獻 [1] Niluthpol Chowdhury Mithun, Nafi Ur Rashid, and S. M. Mahbubur Rahman, “Detection and Classification of Vehicles From Video Using Multiple Time-Spatial Images”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 3, 1215 – 1225, 2012
[2] Durgaprasad Gangodkar, Padam Kumar, and Ankush Mittal, “Robust Segmentation of Moving Vehicles Under Complex Outdoor Conditions”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 4, 1738 – 1752, 2012
[3] Minkyu Cheon, Wonju Lee, Changyong Yoon, and Mignon Park, “Vision-Based Vehicle Detection System With Consideration of the Detecting Location”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 3, 1243 – 1525, 2012
[4] Ming-Ming Cheng, Guo-Xin Zhang, Mitra, N.J., Xiaolei Huang and Shi-Min Hu, “Global Contrast based Salient Region Detection”, IEEE Conference on Computer Vision and Pattern Recognition, 409-416, 2011
[5] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, Wen-Fong Hu, “Automatic Traffic Surveillance System for Vehicle Tracking and Classification”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 7, Issue: 2, 175 – 187, 2006
[6] C. Y. Liu and N. H. C. Yung, “Scale-Adaptive Spatial Appearance Feature Density Approximation for Object Tracking”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 1, 284 – 290, 2011
[7] Amirali Jazayeri, Hongyuan Cai, Jiang Yu Zheng, and Mihran Tuceryan, “Vehicle Detection and Tracking in Car Video Based on Motion Model”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 2, 583 – 595, 2011
[8] Thou-Ho Chen; Jun-liang Chen ; Chin-Hsing Chen ; Chao-ming Chang “Vehicle Detection and Counting by Using Headlight Information in the Dark Environment”, Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Volume: 2, 519 – 522, 2007.
[9] Bing-Fei Wu ; Chih-Chung Kao ; Jhy-Hong Juang ; Yi-Shiun Huang, “A New Approach to Video-Based Traffic Surveillance Using Fuzzy Hybrid Information Inference Mechanism”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 14, Issue: 1, 485 – 491, 2013
[10] Jun Yang, Yang Wang, Getian Ye, Arcot Sowmya, Bang Zhang, Jie Xu, “FEATURE CLUSTERING FOR VEHICLE DETECTION AND TRACKING IN ROAD TRAFFIC SURVEILLANCE”, 16th IEEE International Conference on Image Processing (ICIP), 1141-1144, 2009
[11] Yen-Lin Chen, Bing-Fei Wu, Hao-Yu Huang, and Chung-Jui Fan, “A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance”, in IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Volume: 58, Issue: 5, 2030 – 2044, 2011
[12] Wei Zhang, Q. M. J. Wu, Guanghui Wang, and Xinge You, “Tracking and Pairing Vehicle Headlight in Night Scenes”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 1, 140 – 153, 2012
[13] Andrew H. S. Lai, and Nelson H. C. Yung, “Lane Detection by Orientation and Length Discrimination”, in IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, Volume: 30, Issue: 4, 539 – 548, 2000
[14] Ching-Po Lin, Jen-.Chao Tai and.Kai-Tai Song, “Traffic Monitoring Based on Real-Time Image Tracking”, in IEEE International Conference on Robotics and Automation, Volume: 2, 2091 - 2096, 2003.
[15] Kit Yan Chan, Tharam S. Dillon, Jaipal Singh, Elizabeth Chang, “Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 2, 644 – 654, 2012
[16] Hsu-Yung Cheng, and Shih-Han Hsu, “Intelligent Highway Traffic Surveillance With Self-Diagnosis Abilities”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 4, 1462 – 1472, 2011
[17] Stefan Atev, Grant Miller, and Nikolaos P. Papanikolopoulos,” Clustering of Vehicle Trajectories”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 3, SEPTEMBER 2010
[18] Shan-Yun Teng, Kun-Ta Chuang, Chun-Rong Huang, and Cheng-Chun Li,” Lane Detection in Surveillance Videos Using Vector-Based Hierarchy Clustering and Density Verification”, 14th IAPR International Conference on Machine Vision Applications (MVA) May 18-22, 2015. Miraikan, Tokyo, Japan
[19] Andrews Sobral, “BGS Library - A Background Subtraction Library”, https://www.behance.net/gallery/3943089/BGS-Library-A-Background-Subtraction-Library
[20] Andrews Sobral, “BGSLibrary”, https://github.com/andrewssobral/bgslibrary
[21] Samir Sahli, Yunlong Sheng, “Robust vehicle detection in low-resolution aerial imagery”, In Proceedings of the IEEE International Conference on Computer Vision, International Conference (ICCV), 2001.
[22] Michael Teutsch and Wolfgang Kruger, “Robust and Fast Detection of Moving Vehicles in Aerial Videos using Sliding Windows”, In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[23] Hsu-Yung Cheng, Member, Chih-Chia Weng, and Yi-Ying Chen, “Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks”, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012
[24] Wen Shao, Wen Yang, Gang Liu, and Jie Liu, “Car Detection from High-Resolution Aerial Imagery Using Multiple Features”, in IEEE International Geoscience and Remote Sensing Symposium, 4379-4382, 2012
[25] Ji-Hwei Horng, “An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs”, Pattern Recognition Letters 24 (2003) 565–577
[26] Heikki KAviSinen, Petri Hirvonen, Lei Xut and Erkki Oja, “Probabilistic and nonprobabilistic Hough transforms: overview and comparisons”, Image and Vision Computing Volume 13 Number 4 May 1995
[27] Jeong-Hun Jang and Ki-Sang Hong, “Fast line segment grouping method for finding globally more favorable line segments”, Pattern Recognition 35 (2002) 2235–2247
[28] Chih-Chang Yu, Hsu-Yung Cheng, Member, IEEE, and Yi-Fan Jian, “Raindrop-Tampered Scene Detection and Traffic Flow Estimation for Nighttime Traffic Surveillance”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 16, Issue: 3, 1518 – 1527, JUNE 2015
[29] 台北市交通管制工程處, “交通流量調查資料” http://www.bote.gov.taipei/ct.asp?xItem=660485&CtNode=71101&mp=117031
[30] Charles Anum Adams, M. Abdul Muhsin Zambang, Richter Opoku-Boahen,“Passenger Car Unit Values for Urban Mixed Traffic Flow at
Signalised Intersections on Two Lane Dual Carriageways in
the Tamale Metropolis, Ghana”, International Refereed Journal of Engineering and Science (IRJES), Volume 3, Issue 5(May 2014), PP.41-49
指導教授 鄭旭詠 審核日期 2016-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明