博碩士論文 103522065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.198.165.74
姓名 胡家豪(Jia-Hao Hu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於人臉畫質衡量與識別之視訊目標人物搜尋機制
(A Targeted Person Searching Scheme in Digital Videos based on Face Quality Assessment and Recognition)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2018-9-1以後開放)
摘要(中) 本研究提出數位視訊目標人物搜尋機制,此機制假設使用者被提供一個包含目標人物的範例視訊,以及一個時間可能較長的待測視訊。範例視訊首先經過前處理,將代表多個視訊片段的人物畫面顯示於介面供使用者選取。使用者點選同個目標人物不盡相同之各式樣貌畫面後,本機制經選圖程序挑出若干目標人物影像建立目標樣板,並根據樣本於待測視訊中搜尋與標記可能包含目標人物的視訊片段。我們冀望透過這樣的機制協助建立以圖找圖之視訊中人物搜尋相關應用,例如視訊人物比對、檢索或錄影蒐證等。
本機制主要藉由人臉追蹤方法尋找視訊中包含人臉的連續畫面,利用多張影像的取得建立較穩定之目標人物樣板,再發展可靠的人臉評分方式以選擇較佳的人臉影像方便之後的識別與偵測,避免採用品質不佳的圖片影響運作,也可以減少相關的時間耗費。人臉評分方式主要考量人臉角度、銳利度、光線明暗與離鏡頭遠近等因素,鑒於人臉角度對於識別上的影響甚鉅,我們藉由雙邊濾波判斷人臉是否過度偏斜,實驗結果顯示我們所提出機制的準確度與未來可能的應用暨改進方向。
摘要(英) This research presents a targeted person searching scheme in digital videos. It is assumed that a user is given an exemplar video containing a person to be searched and a video, from which the scenes related the targeted person will be extracted. First, the exemplar video will be processed to select multiple representative images of persons, which will be shown on a user interface for the user to select the images of a targeted person. After choosing the images which best characterize the targeted person, the scheme will apply the face assessment process to build the model of the targeted person. The model can be employed to search that person in other videos. We hope that, by the assistance of such a scheme, searching people in videos can be facilitated. Such applications as actor comparison in videos, retrieval of people, or digital evidence collection can be achieved.

The scheme mainly relies on the face tracking method to find consecutive pictures or frames that contain human faces. With the acquirement of multiple images, we can build a more stable model of the targeted person and further develop a reliable face assessment method to choose better images for recognition. The assessment process not only avoids the images with poor quality, but also reduces operating time and efforts. The face assessment method takes four factors into consideration, including out-of-plane rotation, sharpness, brightness, and resolution. By analyzing parameters and recognition outcomes, we can understand the effects of different settings and interface influence, and investigate the utility of all aspects for face matching in videos. Experimental results show the accuracy of the proposed scheme and the possible improvement in the future.
關鍵字(中) ★ 人臉評分
★ 人臉識別
★ 支持向量機
關鍵字(英) ★ Face Assessment
★ Face Recognition
★ Support Vector Machine
論文目次 論文摘要 i
Abstract ii
致謝 iv
目錄 v
附圖目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2 研究貢獻 3
1.3 論文架構 4
第二章 相關研究 5
2.1 人臉識別相關應用 5
2.2 人臉特徵擷取 6
2.3 人臉評分方式 7
2.4 SVM (Support Vector Machine) 10
第三章 實作方法 12
3.1 系統概述 12
3.2 人臉偵測與追蹤 14
3.3 人臉評分與影像正規化 20
3.3.1 人臉特徵點偵測 22
3.3.2 人臉角度校正與評分 24
3.3.3 銳利度評分 25
3.3.4 亮度評分 27
3.4 人臉特徵擷取 28
第四章 實作展示與討論 33
4.1 影片搜索系統展示 33
4.2 影片搜尋結果 39
4.3 正面人臉評分結果 43
第五章 結論與未來展望 44
5.1 結論 44
5.2 未來展望 44
參考文獻 46
參考文獻 [1] X. Liu and T. Chen, “Video-based face recognition using adaptive hidden markov models”, In IEEE proc. Computer Society Conference on Computer Vision and Pattern Recognition, 2003.
[2] J. Stallkamp, H. K. Ekenel and R. Stiefelhagen. “Video-based face recognition on Real-world data”, In IEEE International conferenceon Computer Vision, 2007.
[3] Z. Han, S. Z. Masood, J. Hochreiter, S. Fonte and M. Tappen, “Album-oriented face recognition for online social networks”, In IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, 2013.
[4] M. Brenner and E. Izquierdo, “Recognizing people by face and body in photo collections”, In IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, 2013.
[5] N. Zhang, M. Paluri, Y. Taigman, R. Fergus and L. Bourdev, “Beyond frontal faces: Improving person recognition using multiple cues”, In IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[6] S. Chen, S. Mau, M. T. Harandi, C. Sanderson, A. Bigdeli and B. C. Lovell, “Face recognition from still images to video sequences: A local-feature-based framework”, EURASIP Journal on Image and Video Processing, 2010.
[7] O. P. Popoola and K. Wang, “Video-Based Abnormal Human Behavior Recognition—A Review”, In IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, 2012.
[8] J. Yang, D. Zhang, A. F. Frangi and J. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition”, In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, 2004.
[9] L. F. Chen, H. Y. M. Liao, M. T. Ko, J. C. Lin and G. J. Yu, “A new LDA-based face recognition system which can solve the small sample size problem”, Pattern Recognition, vol. 33, no. 10, pp. 1713-1726, 2000.
[10] B. A. Draper, K. Baek, M. S. Bartlett and J. R. Beveridgea, “Recognizing faces with PCA and ICA”, Computer Vision and Image Understanding, vol. 91, no. 1-2, pp. 115-137, 2003.
[11] C. Liu and H. Wechsler, “Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition”, In IEEE Transactions on Image Processing, vol. 11, no. 4, pp. 467–476, 2002.
[12] T. Ahonen, A. Hadid and M. Pietikainen, “Face description with local binary patterns: Application to face recognition”, In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, 2006.
[13] Y. C. Chen, V. M. Patel, S. Shekhar, R. Chellappa and P. J. Phillips, “Video-based face recognition via joint sparse representation”, In IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, 2013.
[14] ISO/IEC 19794-5 (published version), “Information technology – biometric data interchange formats – part 5: Face image data”, 2005.
[15] K. Nasrollahi and T. B. Moeslund, “Face quality assessment system in video sequences”, In Conference of Biometrics and Identity Management, no. 5372, pp. 10-18, 2008.
[16] J. Long and S. Li, “Near infrared face image quality assessment system of video sequences”, In IEEE International Conference on Image and Graphics, 2011.
[17] R. Raghavendra, K. B. Raja, B. Yang and C. Busch, “Automatic face quality assessment from video using gray level co-occurrence matrix: An empirical study on automatic border control system”, In IEEE International Conf. on Pattern Recognition, 2014.
[18] K. Anantharajah, S. Denman, D. Tjondronegoro, S. Sridharan, C. Fookes and X. Guo, “Quality based frame selection for face clustering in news video”, In International Conference on Digital Image Computing: Techniques and Applications, 2013.
[19] J. Chen, Y. Deng, G. Bai and G. Su, “Face image quality assessment based on learning to rank”, In IEEE Signal Processing Letters, vol. 22, no. 1, 2015.
[20] H. Kim, S. H. Lee and Y. M. Ro, “Face image assessment learned with objective and relative face image qualities for improved face recognition”, In IEEE International Conference on Image Processing, 2015.
[21] C. Cortes and V. Vapnik, “Support-vector networks”, Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
[22] P. Viola and M. Jones, “Robust real-time object detection”, In International Journal of Computer Vision, 2001.
[23] Z. Kalal, K. Mikolajczyk and J. Matas, “Tracking-Learning-Detection”, In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 1, 2010.
[24] M. Uricar, V. Franc and V. Hlavac, “Detector of facial landmarks learned by the structured output SVM”, In International Conference on Computer Vision Theory and Applications, 2012.
[25] T. Ojala, M. Pietikäinen and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions”, In IEEE Proc. International
Conference on Pattern Recognition, vol. 1, pp. 582-585, 1994.
[26] D. Chen, X. Cao, F. Wen and J. Sun, “Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification”, In IEEE Conference on Computer Vision and Pattern Recognition, 2013.
[27] M. Heikkilä and M. Pietikäinen, “A texture-based method for modeling the background and detecting moving objects”, In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, 2006.
指導教授 蘇柏齊(Po-Chyi Su) 審核日期 2016-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明