博碩士論文 103522107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:54.156.67.164
姓名 王麒堯(Chi-Yao Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 可見光影像與熱影像之人臉辨識
(Face Recognition Based on Visible Images and Thermal Images)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2019-7-27以後開放)
摘要(中) 在現今的社會身分辨識愈來愈受到重視,在安全上扮演了相當重要的角色。其中最受矚目的是利用生物特徵作為辨識,不論是利用指紋辨識使用者的商品或是機場的海關人員透過虹膜辨識入境者的身分,都說明生物特徵辨識系統既便利又有可靠性。過去有許多關於生物辨識的研究¬¬──指紋、聲紋、掌紋、人臉和虹膜,利用各種演算法從中找出穩定又因人而異的特徵作身分辨識。本篇論文著重於人臉的辨識應用,所使用的人臉影像有可見光影像和人體溫度的熱影像,我們將結合兩者的資訊來做辨識。
這兩種影像各有辨識應用上的優劣,而且捕捉的光波範圍不同,表示各有不同的資訊包含其中。可見光影像的部分使用人臉外貌的部分,透過經典的Fisherface方法取出特徵;熱影像的部分則是利用人體的生理現象,擷取皮膚溫度分布的特徵,透過溫度梯度和形態學找出一個類似血管分布的網路圖,我們使用局部正方形滑過網路圖,計算區域內的網路像素的數量作為特徵向量。最後結合這兩種特徵向量得到更長的特徵向量,再利用KNN分類器與資料庫的影像作比對、分類。實驗證明比起使用單一特徵用多個特徵作辨識效果更好。
摘要(英) Nowadays, human identification is more and more important in security. The most important identification method is the use of the biometric feature. Either the commodities which recognize the authorized user with fingerprint or customs officers use the iris recognition system to identify passengers, they elaborate the convenient and the reliable of biometric identification. In the past, a lot of researches on fingerprint, voiceprint, palmprint, human face and iris. They use kinds of algorithms to find out stable feature which differs from person to person for identification. In our approach, we devise a method combine visible images with thermal images for identification.
These two kinds of different images have pros and cons. They capture electromagnetic radiation in different ranges and show they include different information. Features extracted from visual images by classical method, Fisherface method. From thermal images, we get the temperature distribution, by physiology phenomenon, based on temperature gradient and morphology. We use the local square windows to count pixels of a net to make feature vectors indicating images, which is called counter filter. Finally, we use two feature vectors and turn them into longer vectors, and then classify them with KNN classifier. Experimental results demonstrate that the performance of the system with multi-model is better than one with a single model.
關鍵字(中) ★ 人臉辨識
★ 生物特徵辨識
★ 熱紅外線
關鍵字(英) ★ face recognition
★ biometrics
★ thermal infrared
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究動機 2
1.2 相關研究 2
1.2.1. 可見光影像和熱影像優缺點比較 2
1.2.2. 特徵臉(eigenface)和Fisherface 5
1.2.3. 基於生理特徵的人臉辨識 7
1.2.4. 有關生物辨識的影像融合 9
1.3 人臉辨識系統流程 9
1.4 論文架構 11
第二章 前處理 12
2.1. 影像對齊 12
2.2. 臉部定位與感興趣的區域(ROI) 14
2.2.1. 可見光影像定位 15
2.2.2. 熱影像定位 16
第三章 特徵擷取 22
3.1. 可見光影像特徵──Fisherface 22
3.2. 熱影像特徵──Fisherface 22
3.2.1. 體溫分布網路提取 22
3.2.2. 熱影像網路特徵向量 25
3.3. 向量結合 27
3.4. Euclidean 距離 27
3.5. 相關係數 27
3.6. Hausdorff距離 28
3.7. K個最近鄰居法(KNN) 29
第四章 實驗結果討論 30
4.1. 資料收集 30
4.2. ROI比較:手動切割VS自動橢圓切割 32
4.3. 可見光影像的辨識率 35
4.4. 熱影像的辨識率 37
4.5. 結合兩種影像的辨識率 39
4.6. 熱影像Hausdorff距離 39
第五章 結論與未來研究 41
參考文獻 42
附錄1. ROI不同切割方式之相似程度 47
附錄2. 4.3節的實驗結果 48
附錄3. 4.4節的實驗結果 50
附錄4. 4.5節的實驗結果 52
參考文獻 參考文獻
[1] Roger Clarke, “Human Identification in Information Systems: Management Challenges and Public Policy Issues”, Information Technology & People, Vol. 7 No. 4, pp. 6-37, 1994.

[2] HTC One M9+指紋辨識器
http://www.htc.com/tw/support/htc-one-m9-plus/howto/632384.html.

[3] Xin Chen, Patrick J. Flynn and Kevin W. Bowyer, “IR and Visible Light Face Recognition”, Computer Vision and Image Understanding, Vol. 99, Issue 3, pp. 332–358, September 2005.

[4] P. J. Phillips, P. Grother , R. Micheals, et al, “Face recognition vendor test 2002”, IEEE International Workshop on Analysis and Modeling of Faces and Gestures, October 2003.

[5] I.T. Jolliffe, Principal Component Analysis, Springer, 2nd edition, New York, 2002.

[6] Rainer Lienhart, Alexander Kuranov and Vadim Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection”, Pattern Recognition, Vol. 2781, pp. 297-304, 2003.

[7] Paul Viola and Michael J. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, IEEE CVPR 2001, vol.1, pp. 511-518, 2001.

[8] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm”, IN PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, pp. 148-156, Morgan Kauman, Morgan Kaufmann, 1996.

[9] Pradeep Buddharaju, Ioannis T. Pavlidis and Panagiotis Tsiamyrtzis, “Physiology-Based Face Recognition”, IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 354 - 359, 2005.

[10] Pradeep Buddharaju, Ioannis T. Pavlidis, Panagiotis Tsiamyrtzis and Mike Bazakos, “Physiology-Based Face Recognition in the Thermal Infrared Spectrum”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 4, 2007.

[11] Rafael C. Gonzalez, Richard E. Woods著,數位影像處理,吳成柯、程湘君、戴善榮、雲立實譯,儒林圖書有限公司,台北,1993年2月。

[12] Pietro Perona and Jitendra Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion”, IEEE Transactions on PAMI, Vol. 12, No. 7, 1990.

[13] M. A. Turk and A. P. Pentland, “face recognition using eigenfaces”, IEEE CVPR 1991, pp. 586-591, 1991.

[14] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711-720. 1997

[15] Louisa Lam, Seong-Whan Lee and Ching Y. Suen, “Thinning methodologies-a comprehensive survey”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 9, pp. 869-885, 1992.

[16] Julius T. Tou and Rafael C. Gonzalez, “Pattern Recognition Principles”, Addison-Wesley, 2nd edition, 1977.

[17] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, pp. 426-427. McGraw-Hill, New York, 1987.

[18] S. Klein, M. Staring, K. Murphy, M.A. Viergever, J.P.W. Pluim, "elastix: a toolbox for intensity based medical image registration," IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 196 - 205, January 2010.

[19] D.P. Shamonin, E.E. Bron, B.P.F. Lelieveldt, M. Smits, S. Klein and M. Staring, "Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer’s Disease", Frontiers in Neuroinformatics, vol. 7, no. 50, pp. 1-15, January 2014.

[20] Carlos A. R. Behaine and Jacob Scharcanski, “Enhancing the Performance of Active Shape Models in Face Recognition Applications”, IEEE Transactions on Instrumentation and Measurement, pp. 2330-2333, August 2012.

[21] Anuj Srivastava and Xiuwen Liu, “Statistical hypothesis pruning for identifying faces from infrared images”, Image and Vision Computing, Vol. 21, No.7 ,pp. 651-661.

[22] http://www.avio.co.jp/products/infrared/lineup/ir-thermo/g120-g100/spec.html

[23] Virginia Estellers, Dominique Zosso , Rongjie Lai , et al. “Efficient Algorithm for Level Set Method Preserving Distance Function”, IEEE Transactions on Image Processing, Vol. 21, No. 12, 2012.

[24] Ana M. Guzman, et al. “Thermal Imaging as a Biometrics Approach to Facial Signature Authentication”, Biomedical and Health Informatics, Vol. 17, No, 1, 2013.

[25] Nnamdi Osia and Thirimachos Bourlai, “Holistic and Partial Face Recognition in the MWIR Band using Manual and Automatic Detection of Face-based Features”, Homeland Security (HST), 2012 IEEE Conference on Technologies for, pp. 273 – 279, 2012.

[26] Siu-Yeung Ch, Lingyu Wang and Wen Jin Ong, “Thermal Imprint Feature Analysis for Face Recognition”, 2009 IEEE International Symposium on Industrial Electronics, pp. 1875 – 1880, 2009.

[27] David Zhang, Feng Liu and Qijun Zhao, “Selecting a Reference High Resolution for Fingerprint Recognition Using Minutiae and Pores”, IEEE Transactions on Instrumentation and Measurement, Vol. 60, pp. 863-871, March 2011.

[28] Marie-Pierre Dubuisson and Anil K. Jain, “A modified Hausdorff distance for object matching”, Pattern Recognition, Vol. 1, pp. 454-458, October 1994.

[29] Otsu, N., “A Threshold Selection Method from Gray-Level Histograms”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.

[30] Andrew W. Fitzgibbon , Maurizio Pilu and Robert B. Fisher, “Direct Least Squares Fitting of Ellipses”, Pattern Recognition, 1996., Proceedings of the 13th International Conference on, Vol. 1, pp. 253-257, 1996.

[31] C. L. Lin and K. C. Fan, “Biometric verification using thermal images of palm-dorsa vein patterns”, presented at IEEE Trans. Circuit Syst. Video Techn. pp. 199-213, 2004.
[32] Jingu Heo, Seong G. Kong, Besma R. Abidi, and Mongi A. Abidi, "Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition", CVPR Workshop 2004. IEEE Conference on, pp. 122, 2004.

[33] Satyanadh Gundimada and Vijayan K. Asari, “Facial Recognition Using Multisensor Images Based on Localized Kernel Eigen Space”, IEEE Trans. on Image Processing, Vol. 18 No. 6, June 2009.

[34] J.D.E.Beynon and D.R.Lamb, Charge-coupled devices and their applications, McGraw-Hill Book Company, London, 1977
指導教授 范國清 林志隆(Kuo-Chin Fan Chih-Lung Lin) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明