博碩士論文 103522109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:34.239.150.57
姓名 馬永升(Weng-Sheng Bee)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 嵌入式系統音源定位與增强
(Sound Localization and Enhancement in Embedded System)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 應用於旋積盲訊號源分離之BIC基礎式訊號源數目估測及相位補償技術
★ 基於非均勻尺度-頻率圖之環境聲音辨識★ 應用於非監督式音訊轉換偵測之新型方法及特徵參數
★ 旋積盲訊號源分離之超大型積體電路架構設計★ 使用位元率失真之群聚現象與多階層分類機制實現H.264/AVC之快速模式選擇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近幾年來,嵌入式系統的技術及產品已成為全球IT產業的重點之一。此論文研討音訊的定位與增强於嵌入式系統的實現,所嵌入的演算法有方位偵測與混合音源分離。這兩種演算法分別用不同的嵌入式系統來實現,方位偵測使用TI TMS320C6713 DSK做開發,混合音源分離使用Raspberry Pi 2來開發。實驗部分,方位偵測測出的角度達到不錯效果,誤差皆在10度以內;混合音源分離,實驗一使用SIR來評估,1m與2m的平均SIR爲16.72與15.76,實驗二使用語音辨識來評估,此演算法使語音辨識提高至95%。
摘要(英) In recent years, the technology and products of embedded system has become one of the focus of the global IT industry. In this paper, we proposed sound localization and enhancement on embedded system implementation. Sound Localization and Blind Source Separation (BSS) are embedded in embedded system. These two kinds of algorithm with different embedded system to achieve. Source Localization using TI TMS320C6713 DSK do develop, and Blind Source Separation using Raspberry Pi 2 do develop. About of experiment, Sound Localization measured errors angle are less than 10 degrees; Blind Source Separation, first experiment using SIR to evaluate, average SIR of 1m and 2m are 16.72 and 15.76 respectively. Second experiment using Speech recognition to evaluate, this algorithm to make speech recognition increased to 95%。
關鍵字(中) ★ 嵌入式系統
★ 忙訊號分離
★ 方位偵測
關鍵字(英) ★ Embedded System
★ Blind Source Separation
★ TDOA
論文目次 中文摘要 i
英文摘要 ii
圖目錄 iii
表目錄 v
章節目次 vi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法與章節概要 2
第二章 文獻概要 3
2.1 嵌入式系統簡介 3
2.2 方位偵測文獻探討 3
2.3 混合音源分離文獻探討 4
2.3.1 混合模型(Mixing Model) 4
2.3.1.1 旋積混合模型(Convolutive Mixtures Model) 4
2.3.1.2 即時混合模型(Instantaneous Mixing Model) 5
2.3.1.3 在頻率域上的旋積混合 5
2.3.2 Over and Under-Determined 6
2.3.3 分離模型(Separation Model) 6
2.3.3.1 Feed-Forward Structure 7
2.3.3.2 Feedback Structure 7
2.3.3.2 兩個輸入兩個輸出系統 8
2.3.4 分離原理 9
2.3.4.1 Independent Component Analysis(ICA) and BSS 10
第三章 方位偵測嵌入式系統設計 11
3.1 演算法流程與簡介 11
3.1.1 聲音截取-VAD 11
3.1.2 聲音增强-頻譜刪除法 12
3.1.3 方位偵測- TDE-to-DOA方法 13
3.2 嵌入式系統硬體設備 15
3.2.1 週邊配備 16
3.2.2 DSP核心 17
3.2.3 多通道音訊輸入擴充卡 18
3.2.4 效能驗證 19
3.2.4.1 TI TMS320C6713 DSK 使用 19
3.3 CCS軟體 20
3.3.1 TI CCS軟體 21
3.3.2 内部記憶體使用設定 23
第四章 混合音源分離嵌入式系統設計 25
4.1 演算法流程與簡介 25
4.1.1 混合音源分離 25
4.2 嵌入式系統硬體設備 26
4.2.1 Raspberry Pi 2 27
4.2.2 Cirrus Logic Audio Card音訊模組 29
4.3 Raspberry Pi 2 GPIO引脚與應用 30
4.3.1 電源 32
4.3.2 一般用途 32
4.3.3 I²C 32
4.3.4 UART 33
4.3.5 SPI 33
4.4 Raspberry Pi 2 GPIO程式庫 33
4.4.1 WiringPi 33
4.4.2 Pi4J 34
第五章 實驗結果 35
5.1 方位偵測嵌入式系統 35
5.1.1 實驗環境設置 35
5.1.2 實驗環境器材 36
5.1.3 實驗結果 38
5.2 混合音源分離嵌入式系統 40
5.2.1 實驗環境設置 40
5.2.2 實驗環境器材 42
5.2.3 實驗結果 43
第六章 結論及未來研究方向 48
Reference 49
參考文獻 [1] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 27, no. 2, pp. 113-120, Apr 1979.
[2] W. Kim, S. Kang, and H. Ko, “Spectral subtraction based on phonetic dependency and masking effects,” in IEE Proceedings - Vision, Image and Signal Processing, vol. 147, no. 5, pp. 423-427, Oct 2000.
[3] C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320-327, Aug 1976.
[4] T. Kinnunen and P. Rajan, “A practical, self-adaptive voice activity detector for speaker verification with noisy telephone and microphone data,” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, pp. 7229-7233.
[5] R. Schmidt, “Multiple emitter location and signal parameter estimation,” in IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276-280, Mar 1986.
[6] B. Kwon, G. Kim, and Y. Park, “Sound Source Localization Methods with Considering of Microphone Placement in Robot Platform,” RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, 2007, pp. 127-130.
[7] X. Lv and M. Zhang, “Sound Source Localization Based on Robot Hearing and Vision,” Computer Science and Information Technology, 2008. ICCSIT ′08. International Conference on, Singapore, 2008, pp. 942-946.
[8] G. C. Carter, A. H. Nuttall, and P. G. Cable, “The smoothed coherence transform,” inProceedings of the IEEE, vol. 61, no. 10, pp. 1497-1498, Oct. 1973.
[9] Hyvärinen, E. Oja, Independent component analysis: Algorithms and applications, Neural Networks 13 (2000) 411–430.
[10] S. Roberts and R. Everson, Independent component analysis : Principles and Practice., Cambridge University Press, 2001.
[11] S. C. Douglas, H. Sawada, and S. Makino, “A spatio-temporal fastICA algorithm for separating convolutive mixtures,” Proceedings. (ICASSP ′05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., 2005, pp. v/165-v/168 Vol. 5.
[12] A. Belouchrani and M. G. Amin, “Blind source separation based on time-frequency signal representations,” in IEEE Transactions on Signal Processing, vol. 46, no. 11, pp. 2888-2897, Nov 1998.
[13] S. Winter, W. Kellermann, H. Sawada, and S. Makino, “MAP-based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and ℓ1- norm minimization,” EURASIP Journal on Advances in Signal Processing, vol. 2007, 2007, article ID 24717.
[14] P. Bofill, “Underdetermined blind separation of delayed sound sources in the frequency domain,” Neurocomputing, vol. 55, pp. 627–641, 2003.
[15] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation using sparse representations,” Signal Process., vol. 81, pp. 2353 – 2362, Jun. 2001.
[16] Y. Li, S. Amari, A. Cichocki, D. W. C. Ho, and S. Xie, “Underdetermined blind source separation based on sparse representation,” in IEEE Transactions on Signal Processing, vol. 54, no. 2, pp. 423-437, Feb. 2006.
[17] A. Aissa-El-Bey, K. Abed-Meraim, and Y. Grenier, “Blind Separation of Underdetermined Convolutive Mixtures Using Their Time–Frequency Representation,” in IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 5, pp. 1540-1550, July 2007.
[18] A. J. Bell and T. J. Sejnowski, “Blind separation and blind deconvolution: an information-theoretic approach,” Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on, Detroit, MI, 1995, pp. 3415-3418 vol.5.
[19] K. S. Cho and S. Y. Lee, “Analog CMOS implementation of nonholonomic ICA algorithm with automatic offset compensation,” Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International Conference on, Nanjing, 2003, pp. 279-282 Vol.1.
[20] H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and K. Shikano, “Blind source separation based on a fast-convergence algorithm combining ICA and beamforming,” in IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 2, pp. 666-678, March 2006.
[21] M. Ilmi, M. Huda, and W. S. Rahardhita, “Automatic Control Music Amplifier Using Speech Signal Utilizing by TMS320C6713,” Electronics Symposium (IES), 2015 International, Surabaya, 2015, pp. 163-166.
[22] J. Manikandan, B. Venkataramani, K. Girish, H. Karthic, and V. Siddharth, “Hardware Implementation of Real-Time Speech Recognition System Using TMS320C6713 DSP,” 2011 24th Internatioal Conference on VLSI Design, Chennai, 2011, pp. 250-255.
[23] N. B. A. Mustafa, S. Gandi, Z. Abidin Md. Sharrif, and S. Khaleel Ahmed, “Real-time implementation of a Fuzzy Inference System for banana grading using DSP TMS320C6713 platform,” Research and Development (SCOReD), 2010 IEEE Student Conference on, Putrajaya, 2010, pp. 324-328.
[24] J. Singh, H. P. Singh, and S. Singh, “Implementation of FIR Interpolation Filter on TMS320C6713 for VoIP Analysis,” Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second International Conference on, Liverpool, 2010, pp. 289-294.
[25] TMS320C6713 Floating point Digital signal Processor, SPRS186L, Nov 2005
[26] TMS320C6713 DSK Technical Reference, Spectrum Digital Incorporated, April 2004
[27] Code Composer Studio Development Tools v3.3, Getting Started Guide, SPRU509H, Oct 2006.
[28] Code Composer Studio User’ Guide, Texas Instruments, May 2005
[29] M. S. D. Gupta, V. Patchava, and V. Menezes, “Healthcare based on IoT using Raspberry Pi,” Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on, Noida, 2015, pp. 796-799.
[30] N. Hossain, M. T. Kabir, T. R. Rahman, M. S. Hossen, and F. Salauddin, “A real-time surveillance mini-rover based on OpenCV-Python-JAVA using Raspberry Pi 2,” 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, 2015, pp. 476-481.
[31] V. Sandeep, K. L. Gopal, S. Naveen, A. Amudhan, and L. S. Kumar, “Globally accessible machine automation using Raspberry pi based on Internet of Things,” Advances in Computing, Communications and Informatics (ICACCI), 2015 International Conference on, Kochi, 2015, pp. 1144-1147.
[32] S. Paul, A. Antony, and A. B, “Android Based Home Automation Using Raspberry Pi,” International Journal of Computing and Technology, pp. 143-147, Vol. 1, February 2014
[33] E. Upton and G. Halfacree, Raspberry Pi user guide: John Wiley & Sons, 2014
[34] Cirrus Logic Audio Card User Documentation, Cirrus Logic, Jan. 2015
[35] Cirrus Logic Audio Card for B+ and A+ Onwards Schematics, Cirrus Logic, Dec. 2014
[36] A. Fleury, N. Noury, M. Vacher, H. Glasson, and J. F. Seri, “Sound and speech detection and classification in a Health Smart Home,” 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, 2008, pp. 4644-4647.
[37] J. C. Wang, H. P. Lee, J. F. Wang, and C. B. Lin, “Robust Environmental Sound Recognition for Home Automation,” in IEEE Transactions on Automation Science and Engineering, vol. 5, no. 1, pp. 25-31, Jan. 2008.
[38] C. N. Doukas and I. Maglogiannis, “Emergency Fall Incidents Detection in Assisted Living Environments Utilizing Motion, Sound, and Visual Perceptual Components,” in IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 2, pp. 277-289, March 2011.
[39] H. Yan, H. Huo, Y. Xu, and M. Gidlund, “Wireless sensor network based E-health system - implementation and experimental results,” in IEEE Transactions on Consumer Electronics, vol. 56, no. 4, pp. 2288-2295, November 2010.
[40] M. Vacher, F. Portet, A. Fleury, and N. Noury, “Development of Audio Sensing Technology for Ambient Assisted Living: Applications and Challenges,” International Journal of E-Health and Medical Communications, 2(1), pp. 35-54, Jan.-Mar. 2011.
[41] J. F. Wang, P. Y. Shih, Z. H. Fu, and S. C. Lee, “Robust sound recognition applied to awareness for health/children/elderly care,” Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, Anchorage, AK, 2011, pp. 216-219.
[42] Y. Chen, W. Shen, H. Huo, and Y. Xu, “A Smart Gateway for Health Care System Using Wireless Sensor Network,” Sensor Technologies and Applications (SENSORCOMM), 2010 Fourth International Conference on, Venice, 2010, pp. 545-550.
[43] J. Zhao and W. Ding, “DSP platform of shock response spectrum control and its implementation,” Proceedings of the 29th Chinese Control Conference, Beijing, 2010, pp. 4273-4277.
[44] Enhanced Direct Memory Access(EDMA) Controller Reference Guide. TMS320C6000DSP. Texas Instruments Incorporated, 2005.
[45] Multichannel buffered serial port reference guide [M] .Texas Instrument Co.Lmt. 2004.
[46] B. N. Li, M. C. Dong, V. M. I, and M. P. Un, “An embedded medical advisory system for mobile cardiovascular monitoring devices,” Biomedical Circuits and Systems, 2004 IEEE International Workshop on, 2004, pp. 1-1-4.
[47] W. Zhou, J. Liao, B. Li, and J. Li, “A family medical monitoring system based on embedded uC/OS-II and GPRS,” Information and Automation (ICIA), 2012 International Conference on, Shenyang, 2012, pp. 663-667.
[48] H. Y. Hsieh, S. F. Liang, L. W. Ko, M. Lin, and C. T. Lin, “Development of a Real-Time Wireless Embedded Brain Signal Acquisition/Processing System and its Application on Driver′s Drowsiness Estimation,” 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, 2006, pp. 4374-4379.
[49] J. H. Teng, C. Y. Tseng, and Y. H. Chen, “Integration of networked embedded systems into power equipment remote control and monitoring,” TENCON 2004. 2004 IEEE Region 10 Conference, 2004, pp. 566-569 Vol. 3.
[50] Y. Ni, J. Chai, and Q. Shuai, “An Embedded Real Time Remote Control System for Home Network,” Computational Sciences and Optimization (CSO), 2012 Fifth International Joint Conference on, Harbin, 2012, pp. 561-565.
[51] Y. C. Chen, “VLSI Architecture Design for Blind Source Separation based on Infomax and Time-Frequency Masking,” M.S. thesis, Dept. CS, NCU, Taoyuan, Taiwan, 2011.
指導教授 王家慶(Jia-Ching Wang) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明