博碩士論文 103582004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.137.222.157
姓名 李青揚(Ching-Iang Li)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 設計與實作軌跡追蹤與預測演算法用於大型銀幕多點觸控介面
(Design and Implementation of Trajectory Tracking and Estimation Algorithms for Large-Screen Multi-Touch Interface)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討設計與實作智慧型軌跡追蹤與預測演算法於大型銀幕多點觸控介面。該系統使用紅外線(IR)相機來捕獲IR光筆或手指於一個人造IR幕的反射光所產生的IR光點的座標,讓使用者輕鬆地將一個大型平面,投影屏幕或會議桌轉換為多點觸控界面,並且本系統導入單應性演算法來補償IR相機的梯形失真。本研究使用了基於CORDIC演算法的並行處理硬體架構來加速觸控軌跡的關聯性計算,並且軌跡的關聯性計算結果會更新每個已被跟踪的軌跡的運動狀態數據。這些運動數據會被用來幫助多點觸控系統評估每個跟踪軌蹟的滑動範圍,以增加軌跡跟踪運算的準確性。另外,運動數據還會被用來輔助自適應軌跡預測系統來平滑觸控軌跡。該自適應軌跡預測系統應用了模糊邏輯與模糊類神經控制,根據實測數據的分析,該系統能夠減輕測量噪聲產生的抖動軌跡,並且隨著雜訊的幅度自動減少濾波所造成的失真。為了改善用戶體驗,本系統實作於嵌入式平台,作為一個周邊界面,該系統能獨立完成所有觸控座標的計算,並且不消耗主機系統的運算資源。
摘要(英) This research proposes an Artificial Intelligence Multi-Touch Interface System (AI-MTIS) that demonstrates the smart trajectory tracking and estimation algorithms and the implementation of a large-screen multi-touch interface. The AI-MTIS is constructed by utilizing an infrared (IR) camera to capture IR blob that is produced from IR stylus or human finger in an emitted IR field. The coordinate of IR blob is converted to multi-touch input, and AI-MTIS allows user to easily overlay a multi-touch interface on large surface such as projector screen or conference table. The AI-MTIS is implemented as an embedded platform that does not consume computational resource from the host system. The special purpose (SP) processor with the parallel COordinate Rotation Digital Computer (CORDIC) architecture is implemented to compute observation-to-track association. The computation result of this SP processor is evaluated to update the motion status of each tracked trajectory. These motion data are included in multi-touch tracking decision, and it allows the sliding window of each tracked trajectory to be estimated for reducing the tracking error at low sampling rate. Additionally, motion data are reused by the adaptive trajectory estimation (TE) system to smooth touch trajectory and mitigate measurement noise. The proposed TE system utilizes fuzzy logic and fuzzy neural network to derive adaptive filtering decision. The filtering result shows the proposed TE system detects unwanted high frequency noise and adaptively decreases filtering gain to stabilize the smoothness of output trajectory. Overall, multiple autonomous functions are presented in this research to provide a user-friendly multi-touch interface.
關鍵字(中) ★ 軌跡追蹤
★ 軌跡預測
★ 多點觸控
★ 模糊邏輯
★ 模糊類神經
★ 紅外線相機
關鍵字(英) ★ Human-computer interaction
★ Multi-touch
★ Trajectory estimation
★ Fuzzy neural network
★ CORDIC
★ IR camera
論文目次 Chinese Abstract …………………………………………… i
English Abstract …………………………………………… ii
Acknowledgments …………………………………………… iii
Table of Contents …………………………………………… iv
List of Figures …………………………………………… v
List of Tables …………………………………………… vii
Symbol Descriptions ………………………………………… viii
Keywords ………………………………………………………… x
I. Introduction ……………………………………………… 1
1-1 Research Problems ……………………………………… 2
1-2 Relative Works ………………………………………… 3
1-3 Research Goals ………………………………………… 7
1-4 Proposed Designs ……………………………………… 8
1-5 Contributions …………………………………………… 12
1-6 Dissertation Organization …………………………… 13

II. Tracking System Design ……………………………… 14
2-1 Coordinate Tracking Problem ………………………… 14
2-2 The Proposed Coordinate Tracking System ………… 15

III. Trajectory Estimation System Design ……………… 17
3-1 Analysis of Touch Trajectory ……………………… 17
3-2 Adaptive Fuzzy-Kalman Filter ……………………… 29
3-3 Adaptive Kalman Filter With Fuzzy Neural Network … 33

IV. Hardware Implementation ……………………………… 42
4-1 Implementation of IR Camera System …………………… 42
4-2 IR Camera Calibration ………………………………… 46
4-3 Parallel CORDIC Architecture ……………………… 49

V. Performance Evaluation ………………………………… 54
5-1 Evaluation of Proposed Tracking System …………… 54
5-2 Evaluation of Proposed TE Systems ………………… 60

VI. Discussions ……………………………………………… 72
6-1 Comparison to Recent Research Works ……………… 72
6-2 Future Research Works ………………………………… 78

VII. Conclusions …………………………………………… 80
References ………………………………………………………… 81
參考文獻 [1] I. Yang and O. Kwon, “A touch controller using differential sensing method for on-cell capacitive touch screen panel systems,” IEEE Trans. Consum. Electron., vol. 57, no. 3, pp. 1027–1032, Aug. 2011.
[2] T. Hwang, W. Cui, I. Yang, and O. Kwon, “A highly area-efficient controller for capacitive touch screen panel systems,” IEEE Trans. Consum. Electron., vol. 56, no. 2, pp. 1115–1122, May 2010.
[3] Y. Park, J. Bae, E. Kim, and T. Park, “Maximizing responsiveness of touch sensing via charge multiplexing in touchscreen devices,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1905–1910, Aug. 2010.
[4] J. Schoning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook, M. Löchtefeld, N. Motamedi, L. Muller, P. Olivier, T. Roth, and U. V. Zadow, “Multi-touch surfaces: A technical guide,” Technical University of Munich, München, Germany, Tech. Rep. TUM-I0833, 2008.
[5] P. Dietz and D. Leigh, “DiamondTouch: a multi-user touch technology,” in Symp. User Interface Software and Technology (UIST), Orlando, FL, USA, 2001, pp. 219–226.
[6] L. Dung, G. Lai, and Y. Wu, “Shadow touching for interactive projectors,” in 2013 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, pp. 1798–802.
[7] C. I. Li, G. D. Chen, T. Y. Sung, and H. F. Tsai, “Design and Implementation of Smart Multi-Touch Interface Using Special Purpose CORDIC Processor,” IEEE Trans. Consum. Electron., vol. 65, no. 4, pp. 516–525, Nov. 2019.
[8] C. I. Li, G. D. Chen, T. Y. Sung, and H. F. Tsai, “Novel Adaptive Kalman Filter with Fuzzy Neural Network for Trajectory Estimation System,” International Journal of Fuzzy Systems, vol. 21, no. 6, pp. 1649–1660, Sept. 2019.
[9] J. K. Park, C. Lee, D. Kim, J. Chun, and J. T. Kim, “Application of weighing matrices to simultaneous driving technique for capacitive touch sensors,” IEEE Trans. Consum. Electron., vol. 61, no. 2, pp. 261–269, May 2015.
[10] B. Lee, I. Hong, Y. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 2416–2424, Nov. 2009.
[11] J. An, S. Hong, and O. Kwon, “A highly linear and accurate touch data extraction algorithm based on polar coordinates for large-sized capacitive touch screen panels,” IEEE Trans. Consum. Electron., vol. 62, no. 4, pp. 341–348, Nov. 2016.
[12] S. L. Huang, S. Y. Hung, C. C. P. Chen, C. H. Tsao, and N. W. Chang, “An efficient multi-touch tracking algorithm with a large number of points,” in 2014 IEEE 4th Int. Conf. Consumer Electronics Berlin (ICCE-Berlin), Berlin, Germany, pp. 429–430.
[13] S. L. Huang, S. Y. Hung, and C. P. Chen, “Clustering-based multi-touch algorithm framework for the tracking problem with a large number of points,” in 2015 Design, Automation & Test in Europe Conf. & Exhibition (DATE), Grenoble, France, pp. 719–724.
[14] F. Wang, X. Ren, and Z. Liu, “A robust blob recognition and tracking method in vision-based multi-touch technique,” in 2008 IEEE Int. Symp. Parallel and Distributed Processing with Applications, Sydney, NSW, Australia, pp. 971–974.
[15] P. Konstantinova, A. Udvarev, and T. Semerdjiev, “A study of a target tracking algorithm using global nearest neighbor approach,” in Proc. 4th Int. Conf. Computer Systems Technologies: E-Learning, Rousse, Bulgaria, 2003, pp. 290–295.
[16] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance: The clear MOT metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, no. 1, pp. 246–309, Feb. 2008.
[17] B. Benfold and I. Reid, “Stable multi-target tracking in real-time surveillance video,” in Proc. 2011 IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, pp. 3457–3464.
[18] S.S. Blackman, “Multiple hypothesis tracking for multiple target tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 19, no. 1, pp. 5–18, Jan. 2004.
[19] R. E. Kalman,”A new approach to linear filtering and prediction problems,” Journal of Fluids Engineering, vol. 82, pp. 35-45, 1960.
[20] T. Y. Sung, Y. H. Hu, “Parallel VLSI implementation of the Kalman filter,” IEEE Trans. Aerospace Electron. Syst., vol. AES-23, pp. 215-224, 1987.
[21] C. K. Chui, G. Chen, Kalman filtering: with real-time applications, Berlin, Heidelberg: Springer-Verlag, 2009.
[22] K. V. Ramachandra, Kalman filtering techniques for radar tracking, Florida: CRC Press, 2000.
[23] F. Auger, M. Hilairet, J. M. Guerrero et al, “Industrial Applications of the Kalman Filter: A Review,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5458-5471, 2013.
[24] R. Faragher, “Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 128-132, 2012.
[25] C. K. Chui, G. Chen, Kalman filtering: with real-time applications. Berlin, Heidelberg: Springer-Verlag, 2009.
[26] Z. Zhang, J. Li, M. Li, “A Smooth Tracking Algorithm for Capacitive Touch Panels,” International Conference on Communication and Electronic Information Engineering, vol. 116, 2017.
[27] B. I. Ahmad, J. Murphy, P. M. Langdon, S. J. Godsill, “Filtering perturbed in-vehicle pointing gesture trajectories: Improving the reliability of intent inference,” 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), vol. 1–6, 2014.
[28] C. L. Lin, Y. M. Chang, C. C. Hung, C. D. Tu, and C. Y. Chuang, “Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking kalman filter for capacitive touch panels,” IEEE Tran. Ind. Electron., vol. 62, no. 8, pp. 5097–5108, Jan. 2015.
[29] C. L. Lin, Y. M. Chang, H. S. Chen, C. Y. Chuang, and T. C. Chu, “Position tracking based on particle filter for self-capacitance single-touch screen panels,” J. Display Technol., vol. 11, no. 2, pp. 165–169, Oct. 2015.
[30] C. L. Lin, T. C. Chu, C. E. Wu, Y. M. Chang, T. C. Lin, J. F. Chen, C. Y. Chuang, and W. C. Chiu, “Tracking touched trajectory on capacitive touch panels using an adjustable weighted prediction covariance matrix,” IEEE Tran. Ind. Electron., vol. 64, no. 6, pp. 4910–4916, Feb. 2017.
[31] J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Symp. User Interface Software and Technology (UIST), Seattle, WA, USA, 2005, pp. 115–118.
[32] P. C. Ravoor, S. R. Rupanagudi, and B. S. Ranjani, “Detection of multiple points of contact on an imaging touch-screen,” 2012 Int. Conf. Communication, Information & Computing Technology (ICCICT), Mumbai, India, pp. 1–6.
[33] K. Nakajima and T. Igarashi,“Full screen touch detection for the virtual touch screen,” in ACIVS 2017: Advanced Concepts for Intelligent Vision Systems, Antwerp, Belgium, pp. 75–86.
[34] J. Liang, K. Lin, H. Chen, and W. Wang, “Turn any display into a touch screen using infrared optical technique,” IEEE Access, vol. 6, pp. 13033–13040, Mar. 2018.
[35] L. Zhang, J. Saboune, and A. El Saddik, “Transforming a regular screen into a touch screen using a single webcam,” J. Display Technol., vol. 10, no. 8, pp. 647–659, Aug. 2014.
[36] J. Hu, G. Li, X. Xie, Z. Lv, and Z. Wang, “Bare-fingers touch detection by the button′s distortion in a projector-camera system,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 566–575, Apr. 2014.
[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms 3rd edition. Cambridge, Massachusetts London, England: The MIT Press, 2009.
[38] O. Chum, T. Pajdla, and P. Sturm, “The geometric error for homographies,” Comput. Vis. Image Understand., vol. 97, no. 1, pp. 86–102, Jan. 2005.
[39] C. Song , J. Cheng, and W. Feng, “A crowdsensing-based real-time system for finger interactions in intelligent transport system,” Wireless Communications and Mobile Computing, vol. 2017, pp. 1–10, Oct. 2017.
[40] J. Dai and C. R. Chung, “Touchscreen everywhere: On transferring a normal planar surface to a touch-sensitive display,” IEEE Trans. Cybern., vol. 44, no. 8, pp. 1383–1396, Aug. 2014.
[41] K. Cheng and M. Takatsuka, “Initial evaluation of a bare-hand interaction technique for large displays using a webcam,” in Proc. 1st ACM SIGCHI symp. Engineering interactive computing systems (EICS ′09), NY, USA, 2009, pp. 291–296.
[42] A. Geiger, F. Moosmann, O. Car, and B. Schuster, “Automatic camera and range sensor calibration using a single shot,” in Int. Conf. Robotics and Automation (ICRA), St. Paul, MN, USA, May 2012, pp. 3936-3943.
[43] J. Chu, A. GuoLu, and L. Wang, “Chessboard corner detection under image physical coordinate,” Optics and Laser Technology, vol. 48, no. 1, pp. 599–605, Jun. 2013.
[44] K. C. Kiwiel, “On Floyd and Rivest′s SELECT algorithm,” Theoretical Computer Science, vol. 347, pp. 214–238, Nov. 2005.
[45] L. A. Zadeh, “Fuzzy sets,” Inform. Control., vol. 8, no. 3, pp. 338–353, 1965.
[46] O. Kosheleva, V. Kreinovich, “Why Triangular Membership Functions are Often Efficient in F-transform Applications: Relation to Probabilistic and Interval Uncertainty and to Haar Wavelets,” Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations, pp. 127–138, 2018.
[47] S. Mallat, “A Wavelet Tour of Signal Processing: The Sparse Way,” Academic Press, Burlington, 2008.
[48] A. Chatterjee, F. Matsuno, “A neuro-fuzzy assisted extended Kalman filter-based approach for simultaneous localization and mapping (SLAM) problems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 5, pp. 984–997, 2007.
[49] T. H. S. Li, Y. T. Su, S. H. Liu et al, “Dynamic balance control for biped robot walking using sensor fusion Kalman filter fuzzy logic,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4394–4408, 2012.
[50] D. J . Jwo, S. H. Wang, “Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation.” IEEE Sens. J., vol. 7, no. 5, pp. 778–789, 2007.
[51] S. E. Beid, S. Doubabi, “DSP-based implementation of fuzzy output tracking control for a boost converter,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 196–209, 2014.
[52] J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man Cybernet., vol. 23, pp. 665-684, 1993.
[53] S. Nõmm, A. Toomela, “An alternative approach to measure quantity and smoothness of the human limb motions,” Estonian Journal of Engineering, vol. 19, no. 4, pp. 298-308, 2013.
[54] N. Hogan, D. Sternad, “Sensitivity of smoothness measures to movement duration amplitude and arrests,” J. Mot. Behav., vol. 41, no. 6, pp. 529-534, 2009.
[55] S. Balasubramanian, A. Melendez-Calderon, E. Burdet, “A robust and sensitive metric for quantifying movement smoothness,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2126-2136, 2012.
[56] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, E. Burdet, “On the analysis of movement smoothness,” Journal of neuroengineering and rehabilitation, vol. 12, no. 1, 2015.
[57] D. Nauk, R. Kruse, “Neuro-fuzzy systems for function approximation,” Fuzzy Sets Syst., vol. 101, no. 2, pp. 261-271, 1999.
[58] P. Hajek, Metamathematics of Fuzzy Logic. Dordrecht, The Netherlands:Kluwer, 1998.
[59] C. T. Chao, C. C. Teng, “A fuzzy neural network based extended Kalman filter,” International Journal of Systems Science, vol. 27, no. 3, pp. 333-339, 1996.
[60] C. L. P. Chen, Y. Liu, G. Wen, “Fuzzy Neural Network-Based Adaptive Control for a Class of Uncertain Nonlinear Stochastic Systems,” IEEE Transactions on Cybernetics, vol. 44, no. 5, pp. 583-593, 2014.
[61] K. Sun, S. Mou, J. Qiu, T. Wang, H. Gao, “Adaptive Fuzzy Control for Non-Triangular Structural Stochastic Switched Nonlinear Systems with Full State Constraints,” IEEE transactions on Fuzzy Systems, 2018.
[62] J. Qiu, K. Sun, T. Wang, H. Gao, “Observer-Based Fuzzy Adaptive Event-Triggered Control for Pure-Feedback Nonlinear Systems with Prescribed Performance,” IEEE Transactions on Fuzzy Systems, 2019.
[63] T. Y. Sung, H. C. Hsin, and Y. P. Cheng, ”Low-power and high-speed CORDIC-based split-radix FFT processor for OFDM systems,” Digital Signal Processing, vol. 20, no. 2, pp. 511–527, Mar. 2010.
[64] H. C. Lin, “Inter-harmonic identification using group-harmonic weighting approach based on the FFT,” IEEE. Trans. Power Electron., vol. 23, no. 3, pp. 1309-1319, 2008.
[65] C. T. Johnston and D. G. Bailey, “FPGA implementation of a Single Pass Connected Components Algorithm,” in 4th IEEE Int. Symp. Electronic Design, Test and Applications (delta 2008), Hong Kong, China, pp. 228–231.
[66] J. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electron. Comput., vol. EC‐8, no. 3, pp. 330–334, Sept. 1959.
[67] J. S. Walther, “A unified algorithm for elementary functions,” in Proc. Spring Joint Computer Conf. (AFIPS `71), Atlantic City, NJ, USA, 1971, pp. 379–385.
[68] J. Granado, A. Torralba, J. Chavez, and V. Baena-Lecuyer, “Design of an efficient CORDIC-based architecture for synchronization in OFDM,” IEEE Trans. Consum. Electron., vol. 52, no. 3, pp. 774–782, Aug. 2006.
[69] Z. Wu, J. Sha, Z. Wang, L. Li, and M. Gao, “An improved scaled DCT architecture,” IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 685–689, May 2009.
[70] P. A. Kumar, “FPGA implementation of the trigonometric functions using the CORDIC algorithm,” in 2019 5th Int. Conf. Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, pp. 894–900.
[71] T. Y. Sung and H. C. Hsin, “Design and simulation of reusable IP CORDIC core for special-purpose processors,” IET Comput. Digital Tech., vol. 1, no. 5, pp. 581–589, Sept. 2007.
[72] D. Wang, Y. Zhang, C. Yao, “Stroke-based modeling and haptic skill display for Chinese calligraphy,” Virtual Reality, vol. 9, pp. 118-132, 2006.
[73] M. C. Buzzi, M. Buzzi, B. Leporini, A. Trujillo, “Analyzing visually impaired people′s touch gestures on smartphones,” Multimedia Tools Appl., vol. 76, no. 4, pp. 5141-5169, 2017.
[74] A. Bragdon, E. Nelson, Y. Li, K. Hinckley, “Experimental analysis of touch-screen gesture designs in mobile environments,” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ′11, pp. 403-412, 2011.
指導教授 陳國棟 宋志雲(Gwo-Dong Chen Tze-Yun Sung) 審核日期 2020-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明