博碩士論文 103623014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.191.157.186
姓名 林沛萱(Pei-Hsuan Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 磁雲結構與其起始區域之多點觀測分析
(Multipoint Study of Magnetic Cloud Structures and the Associated Solar Origins)
相關論文
★ 臺灣銀行業財務績效、內部人持股及董監事薪酬重要影響因素研析★ 使用SDO / AIA觀測閃焰亮帶之運動情形
★ 強烈太陽閃焰之電場估算及其與X射線之關係★ 太陽閃焰硬X射線與微波觀測結合雙注入電子群之非熱輻射模擬研究
★ IRIS Mg II譜線之太陽閃焰色球加熱現象研究★ 太陽閃焰爆發前準週期脈衝之多波段觀測分析
★ 第三型無線電波爆在不同太陽閃焰相位之研究★ STEREO衛星之太陽高能質子特性與其加速源分析
★ 日冕洞演化與高速太陽風之關係★ 內太陽圈行星際三型太陽無線電波爆之特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磁雲為行星際日冕物質拋射的其中之一子集,是在行星際空間中傳播的重要大尺度結構。本篇論文使用了STEREO及Wind太空船的限地太陽風觀測資料,分析六組具有磁管束磁場結構的磁雲事件,並且試圖闡釋觀測資料與理論模型的差異。研究中的每組磁雲事件均涵蓋至少兩艘的太空船觀測資料,並利用線性無力場磁管束擬合法求得各觀測點之磁管束參數。另外,我們也利用STEREO/COR1、COR2及SOHO/LASCO C2的日冕儀影像、STEREO/EUVI及SOHO/EIT的多波段太陽影像、SOHO/MDI的太陽光球層視線方向磁場資料,以及地面BBSO觀測站所提供的Hα波段觀測影像,觀察這六組磁雲事件之太陽起始區域的活動情形。我們的多點磁雲觀測結果顯示,同一個磁雲不同位置的軸向磁場強度的差異並不大,但磁管束半徑並不相同,各觀測點的磁場螺旋特性都與太陽起始區域相同,且由磁雲磁管束中心軸軸向姿態的分布情形可以發現,磁雲在軸向的空間分布尺度最大可至0.8 AU,以上性質均符合傳統大尺度磁雲模型所預測的圖像。但是當磁雲的磁場結構受到其他太陽風物質影響而變形時,便會造成磁管束擬合結果的誤差。分析的六組事件中,有一半的事件所對應之太陽表面起源區域並無明顯的太陽活動現象,代表1 AU附近所觀測到的磁雲尺度與太陽爆發現象的劇烈程度可能並無直接關連。
摘要(英) Magnetic cloud (MC) is one subset of the interplanetary coronal mass ejection (ICME), which is an important large-scale structure in the interplanetary space. In this study, we use the in-situ solar wind data provided by STEREO and Wind spacecrafts to analyze the properties and global configurations of six MC events. We attempt to clarify the difference between the classical large-scale flux rope model and observations. Each analyzed event has complete data coverage measured by at least two spacecrafts. The flux rope parameters of MCs are derived from a linear force-free field fitting. In addition, we identify the associated solar origins based on coronagraph images from STEREO/COR1&2 and SOHO/LASCO C2, multi-wavelength images from STEREO/EUVI and SOHO/EIT, photospheric line-of-sight magnetograms from SOHO/MDI, and ground based Hα images from BBSO. Our results show that the flux rope radius could be quite different but the central axial magnetic field strength would be similar at different locations of a MC. Magnetic helicity sign of a MC is found to remain invariant from the solar source region to the interplanetary space. It is also found that the scale of a MC in the axial direction can extend to 0.8 AU. All the above properties can be explained by the classical large-scale MC flux rope model. Note that the distorted flux rope magnetic fields due to the interaction with other solar wind structures would affect the fitting results. Half of the studied MC events do not have the strong solar explosions, which implies that the MCs at 1 AU may have weak correspondence with the magnitude of solar activity in source regions.
關鍵字(中) ★ 太陽
★ 日冕物質拋射
★ 行星際日冕物質拋射
★ 磁雲
★ 太陽風
★ 多點觀測
關鍵字(英) ★ Solar
★ Coronal mass ejections
★ Interplanetary coronal mass ejections
★ Magnetic cloud
★ Solar wind
★ Multipoint observations
論文目次 中文摘要..i
英文摘要..ii
致謝..iii
目錄..iv
圖目錄..vii
表目錄..xii
第 1 章 序論..1
1.1 ICME 及磁雲..1
1.2 太陽磁管束結構..7
1.3 相關研究文獻回顧..11
第 2 章 方法與資料..14
2.1. 觀測儀器與資料..14
2.2. Linear Force-free磁管束擬合法..16
2.2.1. Force-Free Field..16
2.2.2. Linear Force-Free磁管束模型..18
2.2.3. Linear Force-Free磁管束擬合法..22
2.2.4. 磁場螺旋度..31
2.3. 選取來源..33
第 3 章 磁雲資料分析與結果..35
3.1. 事件1..37
3.2. 事件2..42
3.3. 事件3..47
3.4. 事件4..53
3.5. 事件5..57
3.6. 事件6..61
3.7. 總結..66
第 4 章 太陽表面相關現象..68
4.1. 事件1與事件2..71
4.2. 事件3及事件5..77
4.3. 事件4與事件6..81
第 5 章 討論..85
5.1. 磁場螺旋度..85
5.2. 磁雲的特性..93
第 6 章 總結..102
參考文獻..104
附錄 A 太空觀測所使用之座標系..110
A-1 GSE座標系與RTN座標系..110
A-2 HEE座標系與HEEQ座標系..110
附錄 B 日冕儀所得到之CME測量數據..111
參考文獻 [1] Acuña, M., Curtis, D., Scheifele, J., Russell, C., Schroeder, P., Szabo, A., Luhmann, J., 2008. The STEREO/IMPACT magnetic field experiment. Space Science Reviews 136 (1-4), 203-226.
[2] Alexander, D., Richardson, I.G., Zurbuchen, T.H., 2006. A brief history of CME science, Coronal Mass Ejections. 3-11. Springer.
[3] Aschwanden, M., 2006. Physics of the solar corona: an introduction with problems and solutions. Springer Science & Business Media.
[4] Berger, M.A., Field, G.B., 1984. The topological properties of magnetic helicity. Journal of Fluid Mechanics 147, 133-148.
[5] Bothmer, V., Schwenn, R., 1994. Eruptive prominences as sources of magnetic clouds in the solar wind. Space Science Reviews 70 (1-2), 215-220.
[6] Bothmer, V., Schwenn, R., 1997. The structure and origin of magnetic clouds in the solar wind, Annales Geophysicae. 1-24.
[7] Brueckner, G., Howard, R., Koomen, M., Korendyke, C., Michels, D., Moses, J., Socker, D., Dere, K., Lamy, P., Llebaria, A., 1995. The large angle spectroscopic coronagraph (LASCO). Solar Physics 162 (1-2), 357-402.
[8] Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., Larson, D.E., 1998. A magnetic cloud containing prominence material: January 1997. Journal of Geophysical Research: Space Physics 103 (A1), 277-285.
[9] Burlaga, L., Klein, L., Sheeley, N., Michels, D., Howard, R., Koomen, M., Schwenn, R., Rosenbauer, H., 1982. A magnetic cloud and a coronal mass ejection. Geophysical Research Letters 9 (12), 1317-1320.
[10] Burlaga, L., Lepping, R., Jones, J., 1990. Global configuration of a magnetic cloud. Physics of magnetic flux ropes, 373-377.
[11] Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., 1981. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. Journal of Geophysical Research: Space Physics 86 (A8), 6673-6684.
[12] Burlaga, L.F., Behannon, K., 1982. Magnetic clouds: Voyager observations between 2 and 4 AU. Solar Physics 81 (1), 181-192.
[13] Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., Kim, R.-S., Lim, E.-K., 2013. Comparison of helicity signs in interplanetary CMEs and their solar source regions. Solar Physics 284 (1), 105-127.
[14] Delaboudiniere, J.-P., Artzner, G., Brunaud, J., Gabriel, A.H., Hochedez, J., Millier, F., Song, X., Au, B., Dere, K., Howard, R., 1995. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Springer.
[15] Domingo, V., Fleck, B., Poland, A.I., 1995. The SOHO mission: an overview. Solar Physics 162 (1-2), 1-37.
[16] Elsasser, W.M., 1956. Hydromagnetic Dynamo Theory. Reviews of Modern Physics 28 (2), 135-163.
[17] Feng, H., Wu, D., Lin, C., Chao, J., Lee, L., Lyu, L., 2008. Interplanetary small‐and intermediate‐sized magnetic flux ropes during 1995–2005. Journal of Geophysical Research: Space Physics 113 (A12).
[18] Galvin, A., Kistler, L., Popecki, M., Farrugia, C., Simunac, K., Ellis, L., Möbius, E., Lee, M., Boehm, M., Carroll, J., 2008. The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Science Reviews 136 (1-4), 437-486.
[19] Goldstein, H., 1983. On the field configuration in magnetic clouds, NASA conference publication
[20] Gopalswamy, N., Yashiro, S., Akiyama, S., 2007. Geoeffectiveness of halo coronal mass ejections. Journal of Geophysical Research: Space Physics 112 (A6).
[21] Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H., 1919. The magnetic polarity of sun-spots. The Astrophysical Journal 49, 153.
[22] Howard, R., Michels, D., Sheeley Jr, N., Koomen, M., 1982. The observation of a coronal transient directed at Earth. The Astrophysical Journal 263, L101-L104.
[23] Howard, R., Sheeley, N., Koomen, M., Michels, D., 1985. Coronal mass ejections: 1979–1981. Journal of Geophysical Research: Space Physics 90 (A9), 8173-8191.
[24] Howard, T.A., Tappin, S.J., 2008. Three-Dimensional Reconstruction of Two Solar Coronal Mass Ejections Using the STEREO Spacecraft. Solar Physics 252 (2), 373-383.
[25] Howard, T.A., Tappin, S.J., 2009. Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 3. Physical Implications. Space Science Reviews 147 (1-2), 89-110.
[26] Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G., 2014. Structures of interplanetary magnetic flux ropes and comparison with their solar sources. The Astrophysical Journal 793 (1), 53.
[27] Hudson, H.S., Bougeret, J.L., Burkepile, J., 2006. Coronal Mass Ejections: Overview of Observations. Space Science Reviews 123 (1-3), 13-30.
[28] Jeong, H., Chae, J., 2007. Magnetic helicity injection in active regions. The Astrophysical Journal 671 (1), 1022.
[29] Ji, H., 1999. Turbulent dynamos and magnetic helicity. Physical review letters 83 (16), 3198.
[30] Jian, L., Russell, C., Luhmann, J., Skoug, R., 2008. Evolution of solar wind structures from 0.72 to 1AU. Advances in Space Research 41 (2), 259-266.
[31] Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M., 2006. Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004. Solar Physics 239 (1-2), 393-436.
[32] Kataoka, R., Miyoshi, Y., 2006. Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Space Weather 4 (9), n/a-n/a.
[33] Kilpua, E., Jian, L., Li, Y., Luhmann, J., Russell, C., 2012. Observations of ICMEs and ICME-like solar wind structures from 2007–2010 using near-Earth and STEREO observations. Solar Physics 281 (1), 391-409.
[34] Kilpua, E., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A., Simunac, K., 2009. STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period, Annales Geophysicae. 4491-4503.
[35] Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T., 2011. Multipoint ICME encounters: Pre-STEREO and STEREO observations. Journal of Atmospheric and Solar-Terrestrial Physics 73 (10), 1228-1241.
[36] Klein, L.W., Burlaga, L.F., 1982. Interplanetary magnetic clouds At 1 AU. Journal of Geophysical Research 87 (A2), 613.
[37] Kopp, R., Pneuman, G., 1976. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics 50 (1), 85-98.
[38] Krieger, A., Timothy, A., Roelof, E., 1973. A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Physics 29 (2), 505-525.
[39] Kumar, A., Rust, D.M., 1996. Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. Journal of Geophysical Research: Space Physics 101 (A7), 15667-15684.
[40] Lepping, R., Acũna, M., Burlaga, L., Farrell, W., Slavin, J., Schatten, K., Mariani, F., Ness, N., Neubauer, F., Whang, Y., 1995. The WIND magnetic field investigation. Space Science Reviews 71 (1-4), 207-229.
[41] Lepping, R., Berdichevsky, D., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A., Quivers, A., 2006. A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications, Annales Geophysicae. 215-245.
[42] Lepping, R.P., Jones, J.A., Burlaga, L.F., 1990. Magnetic field structure of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research 95 (A8), 11957.
[43] Longcope, D., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., Dasso, S., 2007. Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Physics 244 (1-2), 45-73.
[44] Low, B., 1996. Solar activity and the corona. Solar Physics 167 (1-2), 217-265.
[45] Lundquist, S., 1950. Magneto-hydrostatic fields. Arkiv for Fysik 2 (4), 361-365.
[46] Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J., 2012. Multi-Point Shock and Flux Rope Analysis of Multiple Interplanetary Coronal Mass Ejections around 2010 August 1 in the Inner Heliosphere. The Astrophysical Journal 758 (1), 10.
[47] Marubashi, K., 1986. Structure of the interplanetary magnetic clouds and their solar origins. Advances in Space Research 6 (6), 335-338.
[48] Marubashi, K., Lepping, R.P., 2007. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Annales Geophysicae 25 (11), 2453-2477.
[49] Michalek, G., Gopalswamy, N., Lara, A., Yashiro, S., 2006. Properties and geoeffectiveness of halo coronal mass ejections. Space Weather 4 (10).
[50] Moldwin, M., Ford, S., Lepping, R., Slavin, J., Szabo, A., 2000. Small‐scale magnetic flux ropes in the solar wind. Geophysical Research Letters 27 (1), 57-60.
[51] Mulligan, T., Russell, C.T., Luhmann, J.G., 1998. Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophysical Research Letters 25 (15), 2959-2962.
[52] Ogilvie, K., Chornay, D., Fritzenreiter, R., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J., Sittler Jr, E., Torbert, R., 1995. SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Science Reviews 71 (1-4), 55-77.
[53] Parker, E.N., 1955. The Formation of Sunspots from the Solar Toroidal Field. The Astrophysical Journal 121, 491.
[54] Phillips, J., Bame, S., Barnes, A., Barraclough, B., Feldman, W., Goldstein, B., Gosling, J., Hoogeveen, G., McComas, D., Neugebauer, M., 1995. Ulysses solar wind plasma observations from pole to pole. Geophysical Research Letters 22 (23), 3301-3304.
[55] Pizzo, V., 1978. A three-dimensional model of corotating streams in the solar wind, 1. Theoretical foundations. Journal of Geophysical Research: Space Physics 83 (A12), 5563-5572.
[56] Riley, P., Schatzman, C., Cane, H., Richardson, I., Gopalswamy, N., 2006. On the rates of coronal mass ejections: Remote solar and in situ observations. The Astrophysical Journal 647 (1), 648.
[57] Sauvaud, J.A., Larson, D., Aoustin, C., Curtis, D., Médale, J.L., Fedorov, A., Rouzaud, J., Luhmann, J., Moreau, T., Schröder, P., Louarn, P., Dandouras, I., Penou, E., 2007. The IMPACT Solar Wind Electron Analyzer (SWEA). Space Science Reviews 136 (1-4), 227-239.
[58] Scherrer, P., Bogart, R., Bush, R., Hoeksema, J.-a., Kosovichev, A., Schou, J., Rosenberg, W., Springer, L., Tarbell, T., Wolfson, C., 1995. The solar oscillations investigation-Michelson Doppler imager. Solar Physics 162 (1-2), 129-188.
[59] Smith, E.J., Wolfe, J.H., 1976. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophysical Research Letters 3 (3), 137-140.
[60] Tripathi, D., Bothmer, V., Cremades, H., 2004. The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astronomy & Astrophysics 422 (1), 337-349.
[61] Van Ballegooijen, A., Martens, P., 1989. Formation and eruption of solar prominences. The Astrophysical Journal 343, 971-984.
[62] Wilson, R.M., Hildner, E., 1986. On the association of magnetic clouds with disappearing filaments. Journal of Geophysical Research 91 (A5), 5867.
[63] Woltjer, L., 1958. On hydromagnetic equilibrium. Proceedings of the National Academy of Sciences 44 (9), 833-841.
[64] Woltjer, L., 1958. A theorem on force-free magnetic fields. Proceedings of the National Academy of Sciences 44 (6), 489-491.
[65] Yan, L., Luhmann, J., Lynch, B., Kilpua, E., 2014. Magnetic clouds and origins in STEREO era. Journal of Geophysical Research: Space Physics 119 (5), 3237-3246.
[66] Yashiro, S., Gopalswamy, N., Mäkelä, P., Akiyama, S., 2013. Post-eruption arcades and interplanetary coronal mass ejections. Solar Physics 284 (1), 5-15.
[67] Zhang, G., Burlaga, L.F., 1988. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases. Journal of Geophysical Research 93 (A4), 2511.
指導教授 楊雅惠(Ya-Hui Yang) 審核日期 2016-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明