博碩士論文 103623016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.187.121
姓名 邱珮芸(Pei-Yun Chiu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 福衛三號S4閃爍指數時空變化與潮汐分析
(Spatial-Temporal Variation and Tidal Analysis of the FORMOSAT-3/COSMIC S4 Scintillation Index)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 飛鼠號立方衛星電力次系統設計★ 支援飛鼠號立方衛星之S頻段地面站評估及整測
★ 福衛五號軌道推算軟體敏感度及飛行資料分析★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試
★ 中央大學地面系統設計、整測與驗證★ 太空飛行器電力次系統硬體迴路測試平台之建立
★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型
★ 飛鼠號立方衛星之飛行軟體及韌體設計★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析
★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低層大氣層所產生的重力波、行星波、大氣潮汐等大氣擾動會向上傳 遞,造成電離層電漿擾動,近年來提出此低層大氣層與電離層間耦合之相 關證據以及機制的研究也逐漸增加。福爾摩沙衛星三號 (FORMOSAT-3/COSMIC)採用掩星(radio occultation)技術,其觀測涵蓋 範圍以及解析度可以提供多年全球與全天的大氣層以及電離層垂直分佈資 料。由於福衛三號 S4 閃爍指數(scintillation index)時空分佈與電離層中散 塊 E 層(sporadic-E)、F 層不規則體(spread-F)相似,本篇論文利用 2007 年到 2014 年的 S4 閃爍指數來探討電離層擾動受到低層大氣影響的可能因素, 並期望可應用於全球衛星通訊干擾、定位等之分析。
為了探討低層大氣層現象對電離層造成擾動的來源,我們將 S4 閃爍指 數,與量化大氣層聖嬰-南方震盪現象(El-Niño Southern Oscillation)指數 之一的海洋聖嬰指數(Oceanic Niño Index)以及對流層高度進行比較分析, S4 閃爍指數大小與海洋聖嬰指數呈現相似的長期趨勢,其相關係數達到 0.5 左右,且兩者在小波分析(wavelet analysis)頻譜中也都呈現出約 1.5 年與 2.5 年左右的週期,由於低層大氣擾動向上傳遞的過程中會受到許多不同機 制影響,可合理推測大氣層聖嬰-南方震盪現象極有可能為調幅(modulation) 電離層散塊 E 層(Sporadic-E)的低層大氣擾動之一;同時,我們也針對 S4 閃爍指數進行潮汐分析,並利用較大的分潮重建全球 S4 閃爍指數在不同太 陽活動週期的時空分佈,以了解不同大氣潮汐分潮對電離層擾動的影響。
摘要(英) The tides generated from the lower atmosphere can propagate upwards, causing ionospheric perturbations. Many studies have shown evidence for several types of atmosphere-ionosphere coupling in recent years. By using GPS radio occultation (RO) signals, FORMOSAT-3/COSMIC satellites can provide global morphology of the S4 scintillation index, quantifying the distribution of GPS and satellite communications disruptions.
In this study, we show the possible relation between Sporadic-E (Es) and El-Niño Southern Oscillation (ENSO) by using the FORMOSAT-3/COSMIC S4 scintillation index, Oceanic Niño Index (ONI) and tropopause height from 2007 to 2014. The long-term variation of S4 index anomaly with 3-month running mean and solar activity de-trended in the E-region shows similar trend and periods in wavelet spectrum to ENSO and tropopause height. These results indicate that ENSO signatures can be transmitted to Es formation mechanisms, potentially through modulation of vertically propagating atmospheric tides that alter lower thermospheric wind shears.
We also analyze the local time and spatial variation of the COSMIC S4 index, and quantify the major variation modes through tidal analysis from 2007 to 2014. The seasonal variations of the S4 index are presented in this method and the tidal signatures examined, to determine their distribution and overall effect on ionospheric scintillation. The global S4 index longitudinal and local time distribution is reconstructed using the results of our tidal analysis during solar minimum year (2009) and solar maximum year (2014), to determine the significance of zonal irregularities resulting from tidal disturbances.
關鍵字(中) ★ 閃爍 關鍵字(英) ★ Scintillation
論文目次 摘 要 ..............................................................................................i
Abstract ....................................................................................... ii
致 謝 ............................................................................................ iii
Table of contents ......................................................................... iv
List of Figures ...............................................................................v
List of Tables ................................................................................ x
Chapter 1. Introduction..................................................................1
1.1 Ionosphere ..............................................................................1
1.2 Ionospheric irregularities and Scintillations...............................3
1.3 Coupling of the atmosphere and ionosphere ............................6
Chapter 2. Satellites and Dataset ................................................. 10
2.1 GPS.........................................................................................10
2.2 FORMOSAT-3/COSMIC .......................................................... 10
2.3 Scintillation Index S4 ............................................................. 12
Chapter 3. Methodology .............................................................. 14
3.1 Data Processing.......................................................................14
3.2 Tidal Analysis..........................................................................16
Chapter 4. Results and Discussion.................................................19
4.1 Local Time, Seasonal, and Solar activity Distributions ............. 19
4.2 Relation between Sporadic-E and ENSO ................................. 29
4.3 Tidal Analysis..........................................................................38
Chapter 5. Conclusion ................................................................. 62
References ................................................................................... 63
Appendix ..................................................................................... 68
參考文獻 Anthes, R. et al. (2008). The COSMIC/FORMOSAT-3 Mission: Early Results, Bull. Amer. Meteor. Soc, 89(3), 313-333, doi:10.1175/BAMS-89-3-313.
Arras, C., and J. Wickert (2017). Estimation of ionospheric sporadic E intensities from GPS radio occultation measurements. Journal of Atmospheric and Solar-Terrestrial Physics, http://dx.doi.org/10.1016/j.jastp.2017.08.006
Basu, S., E. MacKenzie, and Su. Basu (1988). Ionospheric constraints on VHF-UHF communication links during solar maximum and minimum periods, Radio Sci., 23, 363–378, doi:10.1029/RS023i003p00363.
Basu, S., and S. Basu (1981). Equatorial scintillations-a review. J. Atmos. Terr. Phys., 43, 473.
Bhattacharyya, A. and J. Pandit (2014). Seasonal variationof spread-F occurrence probability at low latitude and its relation with sunspot number. Int. J. Elect. Commun. Technol., 5, 40–43.
Bowman, G. G. (1981). The nature of ionospheric spread-F irregularities in mid-latitude regions. J. Atmos. Terr. Phys., 43, 65– 79.
Bristow, W.A., and B.J. Watkins (1991). Numerical simulation of the formation of thin ionization layers at high latitudes. Geophysical Research Letters, 18, 404–407.
Bristow, W.A., and B.J. Watkins (1994). Effects of large-scale convection electric field structure on the formation of thin ionization layers at high latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 56, 401.
Chu, Y. H., C. Y. Wang, K. H. Wu, K. T. Chen, K. J. Tzeng, C. L. Su, W. Feng, and J. M. C. Plane (2014). Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination. J. Geophys. Res. Space Physics, 119, 2117–2136, doi:10.1002/2013JA019437.
Forbes, J. M., and D. Wu (2006). Solar tides as revealed by
63
measurements of mesosphere temperature by the MLS
experiment on UARS. J. Atmos. Sci., 63(7), 1776–1797.
Gage, K. S., and G.C. Reid (1986). The tropical tropopause and the El
Niño of 1982-1983. J. Geophys. Res., 91(D12), 13315-13317. Grinsted, A., J.C. Moore, and S. Jevrejeva (2004). Application of the
cross wavelet transform and wavelet coherence to geophysical
time series. Nonlinear Proc Geophys, 11, 561–566.
Haldoupis, C. (2011). A tutorial review on sporadic E layers. Aeronomy
of the Earth’s Atmosphereand Ionosphere, Ch29, pp. 381–394. Hatsushika, H. and K. Yamazaki (2001). Interannual variations of
temperature and vertical motion at the tropical tropopause
associated with ENSO. Geophys. Res. Lett., 28(15), 2891-2894. Hysell, D. L., M. Larsen, and M. Sulzer (2016). Observational evidence
for new instabilities in the midlatitude E and F region. Ann. Geophys., 34, 927-941, https://doi.org/10.5194/angeo-34-927-2016.
Kelley, M. C. (1989; 2009). The Earth′s ionosphere: Plasma physics and electrodynamics. International Geophysics Series, 43, San Diego: Academic Press. (Hardcover - 2009/05/19)
Kiladis, G. N., K. H. Straub, G.C. Reid, and K.S. Gage (2001). Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quarterly Journal of the Royal Met. Society,127(576), 1961-1983.
Kintner, P. M., B. M. Ledvina, and E. R. de Paula (2007). GPS and ionospheric scintillations. Space Weather, 5, S09003, doi:10.1029/2006SW000260.
Krall, J., J. D. Huba, S. L. Ossakow, and G. Joyce (2010). Why do equatorial bubbles stop rising?. Geophys. Res. Lett., 37, L09105, doi:10.1029/2010GL043128.
Liu, J.Y., S.P. Chen, W.H. Yeh, H.F. Tsai, and P.K. Rajesh (2015). Worst-case GPS scintillations on the ground estimated from radio occultation observations of FORMOSAT-3/COSMIC during 2007-2014, Surveys in Geophysics, doi: 10.1007/s10712-015-9355-x.
Lotko, W. (contributing author) (2013). Solar and Space Physics: A
64
Science for a Technological Society. National Academy Press, ISBN:
978-0-309-16428-3.
Makela, J. J., and Y. Otsuka (2011). Overview of nighttime ionospheric
instabilities at low- and mid-latitudes: Coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1–4), 419–440, doi:10.1007/s11214-011-9816-6.
Manju, G., C. V. Devasia, and R. Sridharan (2007). On the seasonal variations of the threshold height for the occurrence of equatorial spread F during solar minimum and maximum years. Annales Geophysicae, European Geosciences Union, 25 (4), pp.855-861.
Maute, A., and A. D. Richmond (2017). F-region dynamo simulations at low and mid-latitude. Space Science Reviews, 206, 471-493, doi:10.1007/s11214-016-0262-3.
Nishioka, M., A. Saito, and T. Tsugawa (2008). Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J. Geophys. Res., 113, A05301, doi:10.1029/2007JA012605.
Nygren, T., L. Jalonen, J. Oksman, and T. Taurunen (1984). The role of electric field and neutral wind direction in the formation of sporadic E-layers. Journal of Atmospheric and Solar-Terrestrial Physics, 46, 373–381.
Park, J., H. Lühr, and K.W. Min (2010). Characteristics of F-region dynamo currents deduced from champ magnetic field measurements. J. Geophys. Res., 115(A10), a10302, doi:10.1029/2010JA015604.
Priyadarshi, S. (2015). A Review of ionospheric scintillation models. Surv. Geophys, 36, pp. 295–324, doi:10.1007/s10712-015-9319-1.
Randel, W. J., F. Wu, and D.J. Gaffen (2000). Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res., 105(D12), 15-509.
Randel, W. J., F. Wu, S.J. Oltmans, K. Rosenlof, and G.E. Nedoluha (2004). Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci.,61(17), 2133-2148.
Rieckh, T., B. Scherllin-Pirscher, F. Ladst adter, and U. Foelsche (2014). 65
Characteristics of tropopause parameters as observed with GPS
radio occultation. Atmos. Measurement Tech., 7(11), 3947-3958. Schunk R.W., and A.F. Nagy (2009). Ionospheres, Physics, Plasma
Physics, and Chemistry, 2ed., ISBN:0521877067.
Sreeja, V., C. V. Devasia, Sudha Ravindran, and R. Sridharan (2009). The
persistence of equatorial spread F – an analysis on seasonal, solar activity and geomagnetic activity aspects. Ann. Geophys., 27, pp. 503–510.
Straus, P. R., P. C. Anderson, and J. E. Danaher (2003). GPS occultation sensor observations of ionospheric scintillation. Geophys. Res. Lett., 30(8), 1436, doi:10.1029/2002GL016503.
Sun, Y.-Y., J.-Y. Liu, H.-F. Tsai, C.-H. Lin, and Y.-H. Kuo (2014). The Equatorial El Niño-Southern Oscillation Signatures Observed by FORMOSAT- 3/COSMIC from July 2006 to January 2012. Terr. Atmos. Ocean. Sci., 25, 545–558, doi:10.3319/TAO.2014.02.13.01(A).
Thomas, L. (1996). The coupling of the lower ionosphere with the mesosphere and lower thermosphere. In: Kohl, H., Ruster, R., Schlegel, K., Modern Ionospheric Science. European Geophysical Society, Katlenburg-Lindau, pp. 67–101.
Torrence, D. C., and G. P. Compo (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61-78, doi:10.1175/1520-0477.
Tsunoda, R.T. (1985). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res., 90(A1), 447–456.
Warner, K., and J. Oberheide (2014). Nonmigrating tidal heating and MLT tidal wind variability due to the El Niño–Southern Oscillation. J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD020407.
Whitehead, J.D. (1960). Formation of the sporadic E layer in the temperate zones. Nature, 188, 567.
Whitehead, J.D. (1989). Recent work on mid-latitude and equatorial sporadic E. Journal of Atmospheric and Solar-Terrestrial Physics, 51, 401–424.
66
WMO, M. (1957). A three-dimensional science. WMO Bull., 6, 134-138. Woodman, R. F. (2009). Spread F – an old equatorial aeronomy
problem finally resolved?. Ann. Geophys., 27, 1915–1934.
Wu, Q. (2015). Longitudinal and seasonal variation of the equatorial
flux tube integrated Rayleigh-Taylor instability growth rate. J.
Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021553-T. Yeh, W.H., C.Y. Huang, T.Y. Hsiao, T.C. Chiu, C.H. Lin, and Y.A. Liou
(2012). Amplitude morphology of GPS radio occultation data for sporadic-E layers. J. Geophys. Res., 117:A11304. doi:10.1029/2012JA017875.
Yeh ,W.H., J.Y. Liu, C.Y. Huang, and S.P. Chen (2014). Explanation of the sporadic-E layer formation by comparing FORMOSAT-3/COSMIC data with meteor and wind shear information. J Geophys Res Atmos, 119:4568–4579. doi:10.1002/2013JD020798.
指導教授 張起維(Loren C. Chang) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明