博碩士論文 103624001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.238.184.78
姓名 曹立德(Li-De Tsao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 放射性核種於緩衝區傳輸之數學模式
(Analytical model for radionuclide transport in the buffer zone of the deep geological disposal)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-24以後開放)
摘要(中) 目前,高階放射性廢棄物的處置主要是使用深地層處置法。深地層處置法的概念是以人工障壁和天然障壁組成的多重屏障。緩衝區屬於人工障壁的一部份,其介於廢料罐和母岩間,其作用為防止地下水入侵以及核種吸附。在前人的解析解中,假設核種的擴散是只有單向。然而實際情況中,擴散是由於濃度梯度造成物質由高濃度往低濃度方向移動,因此前人僅考慮單向的假設與此不符。本研究目的是發展二維圓柱座標系統的解析解模式,此模式考慮軸對稱擴散與和核種衰變。假設核種以廢料罐為中心,以徑向擴散向外傳輸情況。與前人之解析解比較,結果顯示對於低衰變常數或是低分配係數的核種,兩種模式的濃度差較大。此外,前人模式中的通量約為本研究中模式通量的兩倍。
摘要(英) At present, a deep geological disposal is designed to store high-level radioactive nuclear waste. Its conception is a multi-barrier structure consisting of engineered barriers and natural barriers. The buffer zone, between the waste can and the bedrock, is a part of the engineered barriers and is to prevent groundwater infiltration and sorbing radionuclides. In previous studies, analytical solution for radionuclides transport is assumed that diffusion is in the transverse direction. However, gradient of concentration makes atoms move from high concentration to low concentration in many different directions. The purpose is to develop the analytical solution in two-dimensional cylindrical coordinate system for radionuclide transport with decay and diffusion. It is assumed that radionuclides transports are radial diffusion and move from the central of the waste can to outside. Compare to previous study, the result shows that difference in concentration between two models gradually increases with low decay constant or low distribution. Besides, the flux in previous model is about two times as that in this study model.
關鍵字(中) ★ 核種傳輸
★ 緩衝區
★ 軸對稱
★ 衰變常數
關鍵字(英) ★ radionuclide transport
★ buffer zone
★ axisymmetric
★ decay constant
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
符號表 viii
一、 序論 1
1-1 前言 1
1-2 文獻回顧 7
1-3 研究目的 10
二、 方法 11
2-1 數學模式 15
2-2 穩態解析解 19
2-3 暫態全解析解 21
2-4 暫態半解析解 24
三、 結果與討論 28
3-1 收斂性測試 29
3-2 模式驗證 35
3-3 衰變常數和分配係數之影響 40
3-4 通量計算 49
四、 結論與建議 52
4-1 結論 52
4-2 建議 53
五、參考文獻 54
參考文獻 [1] Chino, P., Duret, F., Voinis, S., 1999. The Centre de la Manche Disposal Facility: Entering into the Institutional Control Period. Waste Management.
[2] Dutzer, M., & Nicolas, M., 1997. Operating the Centre de l’Aube. In Planning and Operation of Low Level Waste Disposal Facilities (Proc. Symp. Vienna, 1996), IAEA, Vienna, 243-247.
[3] Audet, R., 1976. The Oklo nuclear reactors: 1800 million years ago. Ming Studies, 72-84.
[4] Mossman, D. J., Gauthier-Lafaye, F., Dutkiewicz, A., Brüning, R. ,2008. Carbonaceous substances in Oklo reactors—analogue for permanent deep geologic disposal of anthropogenic nuclear waste. Reviews in Engineering Geology, 19, 1-13.
[5] Ojovan, M. I., Lee, W. E., 2005. An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam, 315.
[6] NEA, S., 2003. 2: Belgian R&D Programme on the Deep Disposal of High-level and Longlived Radioactive Waste: An International Peer Review.
[7] National Research Council (US). Committee on Disposition of High-Level Radioactive Waste Through Geological Isolation. (2001). Disposition of high-level waste and spent nuclear fuel: the continuing societal and technical challenges. National Academies Press, 144-126.
[8] Rahn, R. O., Upton, A. C., 2007. Radiological risk assessment. Risk assessment for environmental health, 239-283.
[9] Baek, I., Pitt, W. W., 1996. Colloid-facilitated radionuclide transport in fractured porous rock. Waste Management, 16(4), 313-325.
[10] Chen, C. T., Li, S. H., 1997. Radionuclide transport in fractured porous media—Analytical solutions for a system of parallel fractures with a constant inlet flux. Waste Management, 17(1), 53-64.
[11] Inoue, Y., & Kaufman, W. J. (1963). Prediction of Movement of Radionuclides in Solution Through Porous Media. Health Physics, 9(7), 705-715.
[12] Van Genuchten, M. T., & Wierenga, P. J., 1976. Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal, 40(4), 473-480.
[13] Nair, R. N., Sunny, F., & Manikandan, S. T., 2010. Modelling of decay chain transport in groundwater from uranium tailings ponds. Applied mathematical modelling, 34(9), 2300-2311.
[14] 大井貴夫, 2011.放射性廃棄物地層処分の人工バリアシステムの応答特性を把するた1めの近似解析解の導出,NUMO-TR-10-06.
[15] Zavoshy, S. J., Chambre, P. L., Ahn, J., Pigford, T. H., Lee, W. W. L., 1988. Steady-state radionuclide transfer from a cylinder intersected by a fissure (No. LBL-23986; UCB-NE-4113). Lawrence Berkeley Lab., CA (USA)
[16] Dubner, H., Abate, J., 1968. Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the ACM (JACM), 15(1), 115-123.
[17] Simon, R. M., Stroot, M. T., Weiss, G. H., 1972. Numerical inversion of Laplace transforms with application to percentage labeled mitoses experiments. Computers and Biomedical Research, 5(6), 596-607.
[18] Wang, Q., Zhan, H., 2015. On different numerical inverse Laplace methods for solute transport problems. Advances in Water Resources, 75, 80-92.
[19] 2000. H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 2, Repository Design and Engineering Technology, Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan, Japan Nuclear Cycle Development Institute (JNC). JNC TN1410 2000–003
[20] Sheppard, M. I., Thibault, D. H. (1990). Default soil solid/liquid partition coefficients, KdS, for four major soil types: a compendium. Health Physics, 59(4), 471-482.
[21] Sudicky, E.A., 1989. The Laplace Transform Galerkin Technique: A time‐continuous finite element theory and application to mass transport in groundwater. Water Resources Research, 25(8), 1833-1846.
[22] Moridis, G.J., D.L. Reddell,, 1991. The Laplace transform finite difference method for simulation of flow through porous media. Water Resources Research, 27(8), 1873-1884.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明