博碩士論文 103624008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.206.194.161
姓名 何信緯(Hsin-Wei Ho)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用分布參數方法發展傾斜裂隙岩層 抽水試驗雙孔隙率模式
(A Double-Porosity Model for Pumping in a Slant Fracture:The Distributed Parameter Approach)
相關論文
★ 微水試驗以兩階段式方法推估薄壁因子與含水層水力導數★ 受負薄壁效應影響微水實驗參數推估方法
★ 單井循環流水力實驗之理論改進與發展★ 地表下NAPL監測技術-薄膜擴散採樣器之發展
★ 水文地層剖析儀與氣壓式微水試驗儀調查淺層含水層水力傳導係數之研究★ Evaluation and management of groundwater resource in Hadong area of Vietnam using groundwater modeling
★ 利用時間分數階移流模式對非反應性示蹤劑在裂隙介質的分析★ 時間分數階傳輸模式對反應性示蹤劑砂箱實驗之分析
★ 利用雙封塞微水試驗推估裂隙含水層水力傳導係數★ 多深度微水試驗之測試段長度對水力傳導係數影響
★ 時間分數階徑向發散流場傳輸模式與單一裂隙示蹤劑試驗分析★ 含水層下邊界對於斜井雙極水流試驗影響
★ 大傾角裂隙岩層抽水試驗用雙孔隙率模式分析★ 裂隙岩層的水流流通面積對跨孔雙封塞 微水試驗資料分析之影響
★ 有效井管半徑模式與有限厚度模式對薄壁效應多深度微水試驗之比較★ 非受壓含水層之三維斜井捕集區解析解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 調查新竹尖石鄉含水層場址顯示一砂質岩層的裂隙帶傾角可大到30 度至60 度。如
此大的傾角會在裂隙帶中引發區域性水流,使抽水試驗產生的地下水流場形成非徑向流場;抽水井上、下游地下水壓力變化不一致,於抽水井附近形成捕集區。過去已發展一雙孔隙率模式以分析裂隙岩層抽水試驗,並完成相關之理論和現地抽水試驗資料分析;該模式採用”集總參數(lumped parameter)方法模擬岩體母質流(matrix flow)”,假設岩體母質流與岩體母質和裂隙帶間的壓力差成正比。然而另有一種”分布參數(distributedparameter)方法,使用達西定律模擬岩體母質流”,假設岩體母質流與岩體母質和裂隙帶間的水力梯度成正比。集總參數和分布參數模式皆用於模擬岩體母質流,兩模式各有優缺點且被廣泛使用。因此本研究的目的為使用分布參數方法建立新的雙孔隙率模式以解決大傾角裂隙帶抽水試驗問題,比較兩種模式的理論分析和資料分析的結果,以了解和區分分布參數和集總參數兩種方法的理論差異和資料分析影響,並透過流場得出大時間的捕集區。本研究開發的模式為Laplace 域半解析解,在半對數圖中大時間洩降呈直線變化;其斜率可決定裂隙流通係數Tf,時間軸的截距則可決定裂隙和岩體母質儲水係數的總合Sf + Sm;利用所得小時間之解可決定岩體母質水力傳導係數Km、參數Sf與Sm。本研究得出分布參數與集總參數模式有相同之大時間漸近解,兩模式之差異在於中小時間的過渡變化;集總參數模式較為平坦,分布參數模式較為陡峭;因此視洩降資料過渡帶的變化,可決定使用何種模式進行資料分析與參數推估。另外本研究由模式推導出捕集區之解析解,並經由推導得知大時間後裂隙和岩體母質不再對抽水井供水,抽水井所抽的水由區域性水流提供;區域性水流i 越強或裂隙流通係數Tf越大,則抽水造成的捕集區越小。因此本研究認為,在分析抽水試驗時,必須考慮裂隙傾角造成的影響。
摘要(英) Investigating the sandstone aquifer from field in Jianshi township indicates that the dip angles of fractured zones can be as large as 30-60 degrees. Such large dip angles may induce a regional flow in the fractured zone, of which the interference with the pumping test will create a non-radial flow field that is asymmetric with respect to the pumping well. The pressure response in the down-gradient and up-gradient of the pumping well is different and a capture zone effect exists in the neighborhood of the pumping well. In the past, a new double-porosity mathematical model for large dipping angle fracture has been developed, and the important theoretical and field pumping test data have been done and analyses. In this model the “lumped-parameter” approach is employed to account for the matrix flow by assuming the flow between the matrix and fractured zone is proportional to the pressure difference between these two flow domains. However, there is another approach, the ”distributed-parameter” approach, for modeling the matrix flow. It invokes the Darcy’s law for the matrix flow by assuming that the matrix flow is proportional to the hydraulic gradient between the matrix and fractured zone. While each approach has certain advantages and disadvantages, they complement each other and are commonly used. Therefore the purpose of this research are employing the distributed-parameter approach to develop a new double-porosity model for pumping test in a large-dip angle fracture zone. Compare the theoretical and data analysis results from the two models in order to investigate and differentiate the impact and consequences associated with two approaches. Finally, the flow field is used to delimit the boundary of capture zone. The solution that we developed is in Laplace-domain, it is found that the large-time drawdown data exhibit a straight line on semi-log paper, and its slop can be used to estimate transmissivity of the fractured zone Tf while its intersection with the time abscissa to determine the sum of the storage coefficient of the fractured zone Sf and of matrix Sm. The matrix conductivity Km, Sf and Sm can be determined by fitting the small- and intermediate- time data by the solution without difficulty. Both the distributed- and lumped-parameter models can be approximated by the same
asymptotic solution at large times. The major difference in these two models; however, lies in that the transition from small times to large times of the lumped-parameter model is flatter than that of the distributed-parameter model. Both the distributed- and lumped-parameter models are useful for data analysis, depending on the characteristics of the transition from small times to intermediate times. In addition, we derive the analytic solution for the capture
zone. Due to prove of solution, regional flow substituted the water supply from matrix and fracture to pumping well. When the regional flow or transmissivity of the fractured zone Tf increase, the capture zone will be bigger. In this project, we think the dip angle is needed to consider during the pumping test.
關鍵字(中) ★ 雙孔隙率模式
★ 抽水試驗
★ 大傾角
★ 捕集區
關鍵字(英)
論文目次 摘要………………………………………………………………………………………………………i
Abstract………………………………………………………………………………………ii
致謝…………………………………………………………………………………………………iii
目錄……………………………………………………………………………………………………iv
圖目錄…………………………………………………………………………………………………vi
表目錄…………………………………………………………………………………………………ix
符號說明………………………………………………………………………………………………x
第一章 背景與研究目的…………………………………………………………………1
1.1 背景……………………………………………………………………………………………1
1.2 研究動機與目的………………………………………………………………………5
第二章 裂隙具傾角分布參數模式…………………………………………………8
2.1 概念模型……………………………………………………………………………………8
2.2 數學模式建立……………………………………………………………………………8
2.3 模式的驗證與參考文獻的比較……………………………………………13
2.4 參數推估方法建立…………………………………………………………………15
2.5 捕集區範圍推導………………………………………………………………………20
第三章 參數推估與資料分析…………………………………………………………22
3.1 抽水試驗與洩降資料分析………………………………………………………22
3.2 現地資料推估水文地質參數…………………………………………………24
第四章 理論分析………………………………………………………………………………31
4.1 傾角與方位角對模式的影響與分析……………………………………31
4.2 分布參數模式與集總參數模式比較……………………………………34
4.3 裂隙傾角對捕集區範圍的影響及模式的供水來源…………35
第五章 結論與建議…………………………………………………………………………44
5.1 結論……………………………………………………………………………………………44
5.2 建議……………………………………………………………………………………………45
參考文獻………………………………………………………………………………………………46
參考文獻 〔1〕吳繹平,「大傾角裂隙岩層抽水試驗用雙孔隙率模式分析」,中央大學應用地質研究所學位論文,1-73頁,2014。
〔2〕Muskat M., The flow of homogeneous fluids through porous media, New York:McGraw-Hill, 1937.
〔3〕Dontsov, K. M., and V. T. Boyarchuck, “Effect of characteristics of a naturally fractured medium upon the shape of buildup curves”, Izvestiya Vysshikh Uchebnykh Zavedenii, Neft Gaz, 1, 42-46, 1971.
〔4〕de Swaan O. A., “Analytic solutions for determining naturally fractured reservoir properties by well testing ”, Society of Petroleum Engineers journal, 16, 117-122, 1976.
〔5〕Boulton N. S. and T. D. Streltsova , “Unsteady flow to a pumped well in a fissured water-bearing formation”, Journal of Hydrology, 35, 257-269, 1977.
〔6〕Boulton N. S. and T. D. Streltsova-Adams, “Unsteady flow to a pumped well in an unconfined fissured aquifer”, Journal of Hydrology, 37, 349-363, 1978.
〔7〕Najurieta, H. L., “A theory for pressure transient analysis in naturally fractured reservoirs”, Journal of Petroleum Technology, 32, 1241-1250, 1980.
〔8〕Serra, K., A. C. Reynolds, and R. Raghavan, “New pressure transient analysis methods for naturally fractured reservoirs ”, Journal of Petroleum Technology, 35, 1902-1914, 1983.
〔9〕Streltsova, T. D., “Well pressure behavior of a naturally fractured reservoir”, Society of Petroleum Engineers journal, 23, 769-780, 1983.
〔10〕Streltsova, T. D., “Hydrodynamics of groundwater flow in a fractured formation”, Water Resources Research, 12.3, 405-414, 1976.
〔11〕Gringarten, A. C., “Interpretation of tests in fissured and multilayered reservoirs with double-porosity behavior: Theory and practice ”, Journal of Petroleum Technology, 36, 549-564, 1984.
〔12〕Barenblatt, G. I., Y. P. Zheltov and I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, Journal Applied Mathematics and Mechanics, 24(5), 1286-1303, 1960.
〔13〕Kazemi H., M. S. Seth, and G. W. Thomas, “The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution”, Soc. of Petrol. Engrs. J.,463-472, 1969.
〔14〕Moench A. F., “Double-porosity models for a fissured groundwater reservoir with fracture skin”, Water Resources Research, 20(7), 831-846, 1984.
〔15〕Dougherty D. E. and D. K. Babu, “Flow to a partially penetrating well in a double-porosity reservoir”, Water Resources Research, 20(8), 1116-1122, 1984.
〔16〕Warren, J. E., and P. J. Root, “The behavior of naturally fractured reservoirs ”, Society of Petroleum Engineers journal, 3, 245-255, 1963.
〔17〕Luthin J. N. and J. C. Guitjens, “Transient solutions for drainage of sloping land”, ASCE J.Irrig. Drain. Div., 93(IR3): 43-51, 1967.
〔18〕Chauhan H. S., G. O. Schwab and M. Y. Hamdy, “Analytical and computer solutions of transient water table of drainage of sloping land”, Water Resources Research, 4(3), 573-579, 1968.
〔19〕Chapman T. G., “Modeling groundwater flow over sloping beds”, Water Resources Research, 16(6), 1114-1118, 1980.
〔20〕Ram S. and H. S. Chauhan, “Analytical and experimental solutions for drainage of sloping lands with time-varying recharge”, Water Resources Research, 23, 1090-1096, 1987.
〔21〕Singh R. N., S. N. Rai and D. V. Ramana, “Water table fluctuation in a sloping aquifer with transient recharge”, Journal of Hydrology, 126, 315-326, 1991.
〔22〕Brutsaert W., “The unit response of groundwater outflow from a hillslope”, Water Resources Research, 30(10), 2759-2763, 1994.
〔23〕Ramana D. V., S. N. Rai and R. N. Singh, “Water table fluctuation due to transient recharge in a 2-D aquifer system with inclined base”, Water Resources Manage, 9, 127-138, 1995.
〔24〕Srivastava K., S. N. Rai and R. N. Singh, “Water-table variation in a sloping aquifer due to random recharge”, Water Resources Manage, 10, 241-250, 1996.
〔25〕Koussis A. D., M. E. Smith, E. Akylas and M. Tombrou, “Groundwater drainage flow in a soil layer resting on an inclined leaky bed”, Water Resources Research, 34(11), 2879-2887, 1998.
〔26〕Shukla K. N., H. S. Chauhan and V. K. Srivastava, “Transient drainage to partially penetrating drains in sloping aquifers”, Journal of Irrigation and Drainage Engineering, 246- 253, 1999.
〔27〕Stagnitti F., L. Li, J. Y. Parlange, W. Brutsaert, D. A. Lockington, T. S. Steenhuis, M. B. Parlange, D. A. Barry and W. L. Hogarth, “Drying front in a sloping aquifer: Nonlinear effects”, Water Resources Research, 40, W04601, 2004.
〔28〕Akylas E., A. D. Koussis and A. N. Yannacopoulos, “Analytical solution of transient flow in a sloping soil layer with recharge”, Hydrological Sciences Journal, 51(4) , 626-641, 2006.
〔29〕Chang Y. C. and H. D. Yeh, “Analytical solution for groundwater flow in an anisotropic sloping aquifer with arbitrarily located multiwells”, Journal of Hydrology, 347, 143-152, 2007.
〔30〕McWhorter, David B., and Daniel K. Sunada. “Ground-water hydrology and hydraulics”, Water Resources Publication, 1977.
指導教授 陳家洵(Chia-Shyun Chen) 審核日期 2017-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明