博碩士論文 103624012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.222.44.167
姓名 許暢軒(Chang-Hsuan Hsu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 地震誘發遽變式山崩之臨界位移
(Critical displacement of earthquake-triggered catastrophic landslides)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前人利用Newmark位移法評估地震誘發山崩時,常用臨界位移作為判斷邊坡是否達破壞之門檻值,其物理意義為滑動面上材料剪力強度達殘餘值所需之位移,此一位移量常透過恆速之土壤強度試驗求得。不同材料具不同臨界位移值,一般為數公分至數十公分。然而,當材料所承受剪切速度不同時,其強度將有明顯變化,因此,文獻中對臨界位移的給定義可能過度簡化。本研究以遽變式山崩為對象,整理近二十年來高速旋剪儀針對各種土壤、岩石材料之試驗結果,並於考慮強度之速度相依性後,重新定義臨界位移為運動不再停止前邊坡的累積位移量,並探討滑動面材料特性、傾角以及地震特性對臨界位移之影響。研究假設剛塊置於一傾角 之斜面(臨界摩擦係數=tan 0.268),輸入東西方向不同頻率(0.5、1.2、2.0Hz)之正弦波地震加速度歷時(PGA=600gal),並利用Newmark位移法,計算滑動面於不同速度位移相依摩擦律條件下之運動行為。結果顯示:遽變式山崩啟動的關鍵在於材料強度是否易隨剪切速度的上升而降低以及材料處高速剪切下穩態強度是否足夠低;另外,臨界位移隨材料的(1)尖峰強度、(2)高速滑移下的穩態強度、(3)弱化距離、(4)強度低於臨界摩擦係數所需之速度等四項摩擦特性之數值增加而增加,其中尤以弱化距離影響最為顯著。地震特性方面則是臨界位移隨地震頻率增加而增加,但不受尖峰地動加速度之影響,不影響之主因在於所輸入地震加速度為正弦波形。對於滑動面傾角的改變亦影響相異材料間臨界位移值大小之關係。綜合以上分析,本研究考慮材料強度之速度位移相依性後發現遽變式山崩的啟動關鍵以及臨界位移大小明顯受材料影響,同時地震特性以及滑動面傾角亦是影響臨界位移因素之一,因此,評估地震誘發山崩的觸發條件時須同時考慮滑動面強度之速度相依、地震特性以及滑動面傾角之大小。
摘要(英) The critical displacement is referred to as a threshold of a slope from stable to unstable, compared with the calculated permanent displacement under seismic load using Newmark displacement analysis. The critical displacement, usually obtained from laboratory shear tests under constant/low shear rates, is defined as the coseismic displacement beyond which strengths along sliding surface approach residual values. The typical values ranges from several centimeters to several tens of centimeters, which depends on the sheared materials. However, this definition of the critical displacement is oversimplified because the strengths along sliding surface is velocity-dependent. Therefore, we collect a large number of parameters which change with different materials of friction tests in order to take into account velocity dependence. Besides, this study redefines critical displacement as the accumulated displacement before initiation and discusses how the critical displacement changes with different dominant frequencies and materials. A simple two dimensional rigid block model incorporating velocity-displacement dependent friction law on sliding plane is adopted. The inclination of the sliding plane is assumed as 15°. The seismic load is simplified as sinusoidal wave with peak ground acceleration of 600 gal. Different seismic frequencies of 0.5, 1.2, 2.0 Hz are used to evaluate the influence of dominant frequency on the critical displacement. The influence of the parameters in the displacement/velocity dependent friction law on the occurrence of block instability is also assessed. Firstly, this study reveals the leading cause which results in catastrophic failures. Secondly, we discuss how material, dominant frequency, peak ground motion acceleration and dip angle of sliding surface influence the critical displacement. Catastrophic failures will not form if the strengths of sliding surface are either not easy to decrease with increasing velocity or remains high under ultrahigh-speed shearing. In addition, if catastrophic failures occur, we find that the higher the peak friction coefficient, steady-state friction coefficient at infinite velocity, slip weakening distance, and critical velocity of material, the higher the critical displacement. In particular, slip weakening distance have great influence on critical displacement. Moreover, the critical displacement is also affected by dominant frequency but not peak ground motion acceleration. Being not affected by peak ground motion acceleration mainly because of the input sinusoidal wave. This study highlights the initiation of landslides and the critical displacement are extremely complex, both obviously rely on materials. Also, velocity-displacement dependent friction law must be taken into account for landslide triggering assessments.
關鍵字(中) ★ 遽變式山崩
★ 臨界位移
★ 殘餘強度
★ Newmark位移法
★ 速度位移相依摩擦律
關鍵字(英)
論文目次 中文摘要 I
英文摘要 III
致謝 VI
目錄 VII
圖目錄 IX
表目錄 XV
符號表 XVI
第一章 緒論 1
第二章 文獻回顧 4
2-1 地震誘發遽變式山崩 4
2-2 Newmark位移法 4
2-3 臨界位移 6
2-4 速度-位移相依摩擦律 7
2-4-1 位移相依摩擦律 9
2-4-2 速度相依摩擦律 10
2-4-3 速度-位移相依摩擦律 12
2-5 速度-位移相依摩擦律引入Newmark位移法 15
第三章 研究方法 18
3-1 剪力試驗結果蒐集 18
3-2 速度-位移相依摩擦律參數迴歸 23
3-3 參數研究所需之速度位移相依摩擦律參數及地震頻率之組合 25
3-4 速度位移相依摩擦律引入Newmark位移法 27
3-5 臨界位移定義 30
3-6 高嶺土低速-高速旋剪試驗 31
第四章 研究結果 35
4-1 無發生遽變式山崩之條件 36
4-2 發生遽變式山崩之條件 37
4-2-1 材料對臨界位移之影響 37
4-2-2 材料參數間對臨界位移之複合影響 43
4-2-3 地震頻率對臨界位移之影響 44
4-2-4 尖峰地動加速度對臨界位移之影響 46
4-2-5 滑動面傾角對臨界位移之影響 47
4-3高嶺土低速-高速旋剪試驗結果 51
第五章 綜合討論 59
5-1 摩擦特性對地震時是否發生遽變式山崩之影響 59
5-2 地震特性對臨界位移之影響 61
5-3 考慮不同類型摩擦律以及高嶺土旋剪試驗結果對臨界位移之可能影響 64
5-4 鹿谷和雅順向坡 68
第六章 結論 75
參考文獻 77
附錄A 85
附錄B 109
附錄C 131
附錄D 134
附錄E 141
附錄F 154
參考文獻 〔1〕 R. C. Wilson and D. K. Keefer, “Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake” Bull. Seism. Soc. Am., Vol 73, pp. 863-877, 1983.
〔2〕 R. W. Jibson, “Landslides caused by the 1811-12 New Madrid Earthquakes”(Ph.D. Dissertation) Stanford University, California, 232 pp., 1985.
〔3〕 R. W. Jibson and D. K. Keefer, “Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone”, Geol. Soc. Am. Bull., Vol 105(4), pp. 521-536, 1993.
〔4〕 王士榮,「以位移法分析自然邊坡在地震力作用下的平面式破壞」,國立成功大學,碩士論文,民國91年。
〔5〕 溫郁菁,「以位移法分析自然邊坡在地震力作用下的曲面形破壞」,國立成功大學,碩士論文,民國92年。
〔6〕 鄭志杰,「砂岩順向坡地震破壞調查與分析-以瑞里地震為例」,國立成功大學,碩士論文,民國88年。
〔7〕 彭文飛,「以位移法分析自然邊坡在地震時之破壞行為的初步探討」,國立成功大學,碩士論文,民國90年。
〔8〕 G. F. Wieczorek, R. C. Wilson and E. L. Harp, “Map showing slope stability during earthquake in San Mateo County”, California, Miscellaneous Investigation Maps I-1257-E, United States Geological Survey, 1985.
〔9〕 D. K. Keefer and R. C. Wilson, “Predicting earthquake-induced landslides, with emphasis on arid and semi-arid environments”, Landslides in arid and semi-arid environments, eds. P. M. Sadler and D. M. Morton, Vol 2, pp. 118-149, 1989.
〔10〕 陳時祖、溫郁菁、彭文飛、蘇容瑩,「總計畫及子計畫一:以位移法分析自然邊坡破壞行為之研究及應用(I)」,2003年。
〔11〕 李旺儒,「比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究」,國立中央大學,碩士論文,民國95年。
〔12〕 林彥志,「利用數值模式模擬地震引致的邊坡滑動行為」,國立台灣大學,碩士論文,民國99年。
〔13〕 H. Sone and T. Shimamoto, “Frictional resistance of faults during accelerating and decelerating earthquake slip”, Nat. Geosci., Vol 2(10), pp. 705-708, 2009.
〔14〕 K. Mizoguchi, T. Hirose, T. Shimamoto and E. Fukuyama, “Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake”, Geophys. Res. Lett., Vol 34(1), L01308, 2007.
〔15〕 T. Togo, T. Shimamoto, J. J. Dong, C. T. Lee and C. M. Yang, “Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi-Chi earthquake, as revealed by high-velocity friction experiments”, Geophys. Res. Lett., Vol 41(6), pp. 1907-1915, 2014.
〔16〕 D. K. Keefer, “Landslides caused by earthquakes”, Geol. Soc. Am. Bull, Vol 95, pp. 406-421., 1984.
〔17〕 E. E. Alonso, A. Zervos and N. M. Pinyol, “Thermo-poro-mechanical analysis of landslides: from creeping behavior to catastrophic failure”, Géotechnique, Vol 66, pp. 202-219, 2016.
〔18〕 唐昭榮,「台灣遽變式山崩傳送與堆積之顆粒流離散元素模擬」,國立台灣大學,博士論文,民國99年。
〔19〕 N. X. Newmark, “Effects of earthquakes on dams and embankments”, Geotechnique, Vol 15, pp. 139-160, 1965.
〔20〕 D. K. Keefer, “Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California event”, Eng. Geol., Vol 58(3-4), pp. 231-249, 2000.
〔21〕 C. C. Huang, Y. H. Lee, H. P. Liu, D. K. Keefer, R. W. Jibson, “Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake”, Bull. Seismol. Soc. Am., Vol 91(5), pp. 953-958, 2001.
〔22〕 Abramson L. W., Lee T. S. , Sharma S. and Boyce G. M., Slope stability and stabilization methods. Second edition, Wiley, USA, 2002.
〔23〕 R. W. Jibson and D. K. Keefer, “Analysis of the origin of landslides in the New Madrid seismic zone”, in Shedlock K. M., and Johnston, A. C., eds., Investigations of the New Madrid seismic zone: U. S. geological survey professional paper 1538, pp. D1-D23, 1994.
〔24〕 R. Romeo, “Seismically induced landslide displacements: a predictive model”, Eng. Geol., Vol 58(3-4), pp. 337-351, 2000.
〔25〕 T. L. Youd, “Ground failure displacement and earthquake damage to buildings”, American Society of Civil Engineers Conference on Civil Engineering and Nuclear Power, 2d, Knoxville, Tennessee, Vol 2, pp. 7-6-2 to 7-6-26.
〔26〕 J. J. Dong, W. R. Lee, M. L. Lin, A. B. Huang and Y. L. Lee, “Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake”, Tectonophysics, Vol 466(3-4), pp. 438-457, 2009.
〔27〕 王少韡,「模擬岩塊受震滑動之動態摩擦行為初探」,國立台灣大學,碩士論文,民國98年。
〔28〕 N. Matasovic, E. Jr. Kavazanjian and J. P. Giroud, “Newmark seismic deformation analysis for geosynthetic covers”, Geosynth. Int., Vol 5(1-2), pp. 237-264, 1998.
〔29〕 B. C. Mendez, E. Botero and M. P. Romo, “A new friction law for sliding rigid blocks under cyclic loading”, Soil. Dyn. Earthq. Eng., Vol 29(5), pp. 874-882, 2009.
〔30〕 T. Hirose and T. Shimamoto, “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting” J. Geophys. Res., Vol 110(B5), B05202, 2005.
〔31〕 李國誠,「斜坡岩塊受震滑動行為之研究」,國立台灣大學,博士論文,民國100年。
〔32〕 賴俊融,「單速與不同頻率變速旋剪試驗條件下高嶺土之速度與位移相依摩擦律」,國立中央大學,碩士論文,民國104年。
〔33〕 G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco and T. Shimamoto, “Fault lubrication during earthquakes”, Nature, Vol 471, pp. 494-498, 2011.
〔34〕 J. H. Dieterich, “Modeling of rock friction experimental results and constitutive equations” J. Geophys. Res., Vol 84, pp. 2161-2168, 1979.
〔35〕 A. Ruina, “Slip instability and state variable friction laws”, J. Geophys. Res., Vol 88, pp. 10359-10370, 1983.
〔36〕 C. H. Scholz, “Earthquakes and friction laws”, Nature, Vol 391, pp. 37-42, 1998.
〔37〕 A. Tsutsumi and T. Shimamoto, “High-velocity frictional properties of gabbro”, Geophys. Res. Lett., Vol 24, pp. 699-702, 1997.
〔38〕 D. L. Goldsby and T. E. Tullis, “Low frictional strength of quartz rocks at subseismic slip rates”, Geophys. Res. Lett., Vol 29(17), pp. 1844, 2002.
〔39〕 G. Di Toro, D. L. Goldsby and T. E. Tullis, “Friction falls towards zero in quartz rock as slip velocity approaches seismic slip rates”, Nature, Vol 427(6973), pp. 436-439, 2004.
〔40〕 N. Brantut, A. Schubnel, J. N. Rouzaud, F. Brunet and T. Shimamoto, “High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics”, J. Geophys. Res., Vol 113(B10), B10401, 2008.
〔41〕 J. W. Kim, J. H. Ree, R. Han and T. Shimamoto, “Experimental evidence for the simultaneous formation of pseudotachylyte and mylonite in the brittle regime”, Geology, Vol 38(12), pp. 1143-1146, 2010.
〔42〕 K. Oohashi, T. Hirose and T. Shimamoto, “Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics”, J. Struct. Geol., Vol 33(6), pp. 1122-1134, 2011.
〔43〕 T. Togo, T. Shimamoto, S. Ma and T. Hirose, “High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake”, Earthq. Sci., Vol 24, pp. 267-281, 2011.
〔44〕 M. Sawai, T. Shimamoto and T. Togo, “Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes”, J. Struct. Geol., Vol 38, pp. 117-138, 2012.
〔45〕 L. Hou, S. Ma, T. Shimamoto, J. Chen, L. Yao, X. Yang and Y. Okimura, “Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake”, Earthq. Sci., Vol 25, pp. 197-217, 2012.
〔46〕 T. Togo and T. Shimamoto, “Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion: An experimental study”, J. Struct. Geol., Vol 38, pp. 139-155, 2012.
〔47〕 J. Chen, X. Yang, L. Yao, S. Ma and T. Shimamoto, “Frictional and transport properties of the 2008 Wenchuan earthquake fault zone: Implications for coseismic slip-weakening mechanisms”, Tectonophysics, Vol 603, pp. 237-256, 2013a.
〔48〕 J. Chen, X. Yang, Q. Duan, T. Shimamoto and C. J. Spiers, “Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan fault during the 2008 Wenchuan earthquake: Inferences from experiments and modeling”, J. Geophys. Res., Vol 118(8), pp. 4145-4169, 2013b.
〔49〕 L. Yao, T. Shimamoto, S. Ma, R. Han and K. Mizoguchi, “Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: Experiments and implications for the mechanisms of high-velocity weakening of faults”, J. Geophys. Res., Vol 118(8), pp. 4547-4563, 2013.
〔50〕 M. Violay, S. Nielsen, E. Spagnuolo, D. Cinti, G. Di Toro and G. Di Stefano, “Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes”, Earth Plant. Sci. Lett., Vol 361, pp. 74-84, 2013.
〔51〕 C. M. Yang, W. L. Yu, J. J. Dong, C. Y. Kuo, T. Shimamoto, C. T. Lee, T. Togo and Y. Miyamoto, “Initiation, movement, and run-out of the giant Tsaoling landslide-What can we learn from a simple rigid block model and a velocity-displacement dependent friction law?”, Eng. Geol., Vol 182, pp. 158-181, 2014.
〔52〕 S. Ma, T. Shimamoto, L. Yao, T. Togo and H. Kitajima, “A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates”, Earthq. Sci., Vol 27, pp. 469-497, 2014.
〔53〕 鄭慧筠,「地震誘發楔型滑動之Newmark位移分析─以大光包巨型山崩為例」,國立中央大學,碩士論文,民國104年。
〔54〕 曹家哲,「汶川地震誘發大光包巨型山崩啟動及幾何特性研究」,國立中央大學,碩士論文,民國103年。
〔55〕 R. Han, T. Shimamoto, T. Hirose, J. H. Ree, and J. Ando, “Ultralow friction of carbonate faults caused by thermal decomposition”, Science, Vol 316(5826), pp. 878-881, 2007.
〔56〕 R. Han, T. Hirose and T. Shimamoto, “Strong velocity-weakening and powder lubrication of simulated carbonate faults at seismic slip-rates”, J. Geophys. Res., Vol 115, B03412, 2010.
〔57〕 G. Di Toro, T. Hirose, S. Nielsen and T. Shimamoto, “Relating high-velocity rock friction experiments to coseismic slip in the presence of melts”. In Earthquakes: Radiated energy and the physics of faulting, ed. R. Abercrombie, A. McGarr, G. Di Toro, H. Kanamori, Geophys. Monogr., Vol 170, pp. 121-34, 2006a. (Washington, DC: Am. Geophys. Union)
〔58〕 P. Del Gaudio, G. Di Toro, R. Han, T. Hirose, S. Nielsen, T. Shimamoto and A. Cavallo, “Frictional melting of peridotite and seismic slip”, J. Geophys. Res., Vol 114, B06306, 2009.
〔59〕 S. Nielsen, G. Di Toro, T. Hirose and T. Shimamoto, “Frictional melt and seismic slip”, J. Geophys. Res., Vol 113, B01308, 2008.
〔60〕 Niemeijer, G. Di Toro, S. Nielsen and F. Di Felice, “Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity”, J. Geophys. Res., Vol 116, B07404, 2011.
〔61〕 G. Di Toro, T. Hirose, S. Nielsen, G. Pennacchioni and T. Shimamoto, “Natural and experimental evidence of melt lubrication of faults during earthquakes”, Science, Vol 311(5761), pp. 647-649, 2006b.
〔62〕 陳宥任,「快速滑動塊體滑動面正向應力與超額移動距離」,國立中央大學,碩士論文,民國101年。
〔63〕 N. De Paola, T. Hirose, T. Mitchell, G. Di Toro, T. Togo and T. Shimamoto, “Fault lubrication and earthquake propagation in thermally unstable rocks”, Geology, Vol 39(1), pp. 35-38, 2011.
〔64〕 F. Ferri, G. Di Toro, T. Hirose and T. Shimamoto, “Evidences of thermal pressurization in high velocity friction experiments on smectite-rich gouges”, Terra Nova, Vol 22(5), pp. 347-353, 2010.
〔65〕 H. Kitajima, J. S. Chester, F. M. Chester and T. Shimamoto, “High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution”, J. Geophys. Res., Vol 115, B08408, 2010.
〔66〕 L. Yao, T. Shimamoto, S. Ma, J. Chen and T. Togo, “Internal structures and high-velocity frictional properties of Longmenshan fault zone at Pingxi outcrop, Sichuan, China”, AOGS 8th Annual General Meeting. Taipei, Taiwan, Aug. 8-12, 2011.
〔67〕 L. W. Kuo, H. Li, S. A. F. Smith, G. Di Toro, J. Suppe, S. R. Song, S. Nielsen, H. S. Sheu and J. Si, “Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake”, Geology, Vol 42(1), pp. 47-50, 2013.
〔68〕 K. Oohashi, T. Hirose and T. Shimamoto, “Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge”, J. Geophys. Res., Vol 118(5), pp. 2067-2084, 2013.
〔69〕 S. A. F. Smith, G. Di Toro, S. Kim, J. H. Ree, S. Nielsen, A. Billi and R. Spiess, “Coseismic recrystallization during shallow earthquake slip”, Geology, Vol 41(1), pp. 63-66, 2012.
〔70〕 R. Han, T. Hirose, T. Shimamoto, Y. Lee and J. Ando, “Granular nanoparticles lubricate faults during seismic slip”, Geology, Vol 39(6), pp. 599-602, 2011.
〔71〕 K. Ujiie and A. Tsutsumi, “High-velocity frictional properties of clay-rich fault gouge in a megasplay fault zone, Nankai subduction zone”, Geophys. Res. Lett., Vol 37, L24310, 2010.
〔72〕 K. Ujiie, H. Tanaka, T. Saito, A. Tsutsumi, J. J. Mori, J. Kameda, E. E. Brodsky, F. M. Chester, N. Eguchi and S. Toczko, Expedition 343 and 343T Scientists, “Low coseismic shear stress on the tohoku-oki megathrust determined from laboratory experiments”, Science, Vol 342(6163), pp. 1211-1214, 2013.
〔73〕 J. H. Dieterich, “Time-dependent friction and the mechanics of stick slip”, Pure Appl. Geophys., Vol 116, pp. 790-806, 1978.
〔74〕 N. M. Beeler, T. E. Tullis and D. L. Goldsby, “Constitutive relationships and physical basis of fault strength due to flash heating”, J. Geophys. Res. Vol 113, B01401, 2008.
〔75〕 Y. Boneh, A. Sagy and Z. Reches, “Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding”, Earth Plant. Sci. Lett., Vol 381, pp. 127-137, 2013.
〔76〕 T. Hirose and M. Bystricky, “Extreme dynamic weakening of faults during dehydration by coseismic shear heating”, Geophys. Res. Lett., Vol 34(14), L14311, 2007.
〔77〕 Y. Lavallée, T. Hirose, J. E. Kendrick, S. D. Angelis, L. Petrakova, A. J. Hornby and D. B. Dingwell, “A frictional law for volcanic ash gouge”, Earth Plant. Sci. Lett., Vol 400, pp. 177-183, 2014.
〔78〕 余威論,「速度-位移相關摩擦係數與巨型山崩運動特性」,國立中央大學,碩士論文,民國100年。
〔79〕 A. Ghosh and W. Haupt, “Computation of the seismic stability of rock wedges”, Rock. Mech. Rock. Eng., Vol 22(2), pp. 109-125, 1989.
〔80〕 李國誠,「斜坡岩塊受震滑動行為之研究」,國立台灣大學,博士論文,民國100年。
〔81〕 D. R. Bhat, N. Bhandary and R. Yatabe, “Effect of shearing rate on residual strength of kaolin clay”, Electronic J. Geotech. Eng. Vol 18(G), pp. 1387-1396, 2013.
〔82〕 American Society for Testing and Materials, “Standard test method for direct shear test of soils under consolidated drained conditions”, D3080M – 11, 2012.
〔83〕 經濟部中央地質調查所,「南投縣鹿谷鄉和雅村深坑聚落岩體滑動勘查報告」,2006年。
〔84〕 L. Geli, P. Y. Bard and B. Jullien, “The effect of topography on earthquake ground motion: a review and new results”, Bull. Seismol. Soc. Am., Vol 78(1), pp. 42-63, 1988.
〔85〕 王文能,尹承遠,陳志清,李木青,「九二一地震崩塌地現況與災害防治」,九二一震後中日土砂災害調查及治理研討會,79-90頁,2000年。
〔86〕 G. A. Athanasopoulos, P. C. Pelekis and E. A. Leonidou, “Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake”, Soil. Dyn. Earthq. Eng., Vol. 18(2), pp. 135-149, 1999.
〔87〕 C. T. Lee, C. T. Cheng, C. W. Liao and Y. B. Tsai, “Site classification of Taiwan free-field strong-motion stations”, Bull. Seism. Soc. Am., Vol 91(5), pp. 1283-1297, 2001.
指導教授 董家鈞 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明