博碩士論文 103624015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.208.159.25
姓名 吳宛庭(Wan-Ting Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 三維裂隙網路升尺度方法推估等效參數之差異評估
(Quantitative assessment of different upscaling techniques for estimating equivalent flow parameters in 3D discrete fracture networks)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 固結岩體中裂隙主導地下水儲存、流動與傳輸,但相對於岩體,裂隙佔據較小體積,因此當分析區域擴大時,在模擬域適用區大小的選擇上及以裂隙尺度分析大區域水流與污染傳輸上遇到困難。為求執行上之可行性,離散裂隙通常透過生成等效連續體參數分析大區域裂隙水流與污染傳輸問題。以上方法已成為現今重要的分析方法,但在計算上仍需改善,使其有效減少計算量提高評估效益。本研究提出利用現地資料分析結果,直接判斷模擬區域內裂隙水力連通機率的大小,做為升尺度模擬適用區的參考,並且利用假想裂隙資料做水力連通性分析。除此之外,本研究也利用前人研究調查數據建立數值模式,透過藉由裂隙特性做判斷的Oda方法及以水流逆推的Block法,進行升尺度參數轉換及差異性評估,希望建立最符合效益之計算方法。根據研究結果顯示,透過敏感度分析後可量化出不同裂隙參數的連通機率,並提出最小連通裂隙強度做為模擬區域尺寸選擇之參考指標;透過前人現地資料模擬結果,可畫分出兩種升尺度方法之適用範圍,在塊體網格小於裂隙片網格時適用Oda方法,而塊體網格遠大於裂隙片網格且連通性較少時適用Block方法,則可達到模擬最佳效益。透過本研究所建立之升尺度判斷標準,可透過現地之裂隙參數,升尺度網格與裂隙片網格尺寸進行篩選,提供未來升尺度模擬之參考。
摘要(英) The fractures in the rock matrix are fundamental units that control flow and contaminant transport in fractured formations. Because of complex network connectivity and relative small volumes of the fractures, the simulations of flow and transport in large-scale fractured formations have become challenge tasks to resolve flow and transport in 3D discrete fracture networks (DFNs). The flow parameter upscaling is one of the typical approaches to account for the fracture flow behavior in large-scale problems. The upscaled parameters (also call equivalent parameters) rely on accurate calculations of fracture connectivity and the representative elementary volume (REV) sizes (i.e., numerical cell sizes) for upscaling. The objectives of this study are to quantify the effects of fracture distribution parameters on fracture connectivity for different REV sizes, and to assess the upscaled flow parameters based on different upscaling techniques. A synthetic fracture distribution was used for estimating statistics of the fracture connectivity. The comparison of Oda and Block upscaling techniques in FracMan software were conducted to assess the efficiency and accuracy of the estimated equivalent flow parameters for specified REVs. In this study a field fracture distribution was used for the comparison. The results show that the fracture connectivity mainly controlled by the fracture intensity. The statistics of the fracture connectivity can be the important index to decide a suitable REV size for 3D DFNs. The comparison of two different upscaling techniques showed that the accuracy of the upscaled flow parameters might relevant to the cell size for resolving 3D fractures in the FracMan software. Because of the conceptual differences employed in Oda and Block upscaling techniques, the test cases showed that the Oda technique is efficient for high fracture density location 3D DFNs and the Block technique can result in relatively accurate flow parameters for low fracture intensity locations in 3D DFNs. The results of the study are important references for future works in selecting suitable simulating cells for upscaling 3D DFNs in large-scale flow and transport problems.
關鍵字(中) ★ 離散裂隙網路
★ 裂隙連通性
★ 升尺度
★ 代表性基本體積
★ 裂隙強度
★ FracMan
關鍵字(英) ★ Discrete fracture network
★ fracture connectivity
★ upscaling
★ representative elementary volume
★ fracture intensity
★ FracMan
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 3
1-3 研究目的 8
1-4 研究架構與流程 9
第二章 理論與方法 10
2-1 現地裂隙資料的應用 10
2-2 裂隙地下水傳輸模式 17
2-3 Oda滲透率升尺度方法 26
2-4 Block水流升尺度方法 30
2-5 FracMan 32
2-6 MAFIC 33
第三章 水力連通機率敏感度分析與討論 37
3-1水力連通性分析方法 37
3-2 分析項目 38
3-3 分析步驟 38
3-4 敏感度分析 40
第四章 升尺度模擬與討論 49
4-1研究區域資料介紹 49
4-3 分析結果 57
第五章 結論與建議 62
5-1 研究結論 63
5-2 研究建議 65
參考文獻 66
參考文獻 [1] 宋政輝,「裂隙岩體破裂面參數與滲透性調查技術之研究」,臺北科技大學資源工程研究所,碩士論文,2012。
[2] Romm, E., “Flow characteristics of fractured rocks”, Nedra, Moscow , 283, 1966.
[3] Parsons, R., “Permeability of idealized fractured rock”, Society of Petroleum Engineers Journal, Vol 6, pp. 126-136, 1966.
[4] Caldwell, J., “The theoretical determination of the permeability tensor for jointed rock”, Proc Symp on Percolation through Fissured Rock, Int. Soc. Rock Mech. & Int. Assoc. Engng. Geol, 1972.
[5] Wilson, C. R. and Witherspoon, P. A., “Flow interference effects at fracture intersections”, Water Resources Research, Vol 12, pp.102-104, 1976.
[6] Ahmed Elfeel, M., Improved upscaling and reservoir simulation of enhanced oil recovery processes in naturally fractured reservoirs, Diss. Heriot-Watt University, 2014.
[7] 趙奕然,「利用 LiDAR 點雲及影像資料決定露頭節理結合面之研究」,國立中央大學應用地質學系,碩士論文,2014。
[8] Singhal, B. B. S. and Gupta, R. P., Applied hydrogeology of fractured rocks, Springer Science & Business Media., 1999.
[9] Song, J. J. and Lee, C. I., “ Estimation of joint length distribution using window sampling”, International Journal of Rock Mechanics and Mining Sciences, Vol 38, pp.519-528, 2001.
[10] Lee, I. H. and Ni, C. F., “Fracture-based modeling of complex flow and CO 2 migration in three-dimensional fractured rocks”, Computers & Geosciences, Vol 81, pp.64-77, 2015.
[11] Barenblast, G. and Zheltov, Y. P., “Fundamental equations of filtration of homogeneous liquids in fissured rocks”, Soviet Physics Doklady, Vol 522, 1960.
[12] Theis, C. V., “The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground‐water storage”, Eos, Vol 16(2) , pp.519-524, 1935.
[13] Cooper, H. H. and Jacob, C. A., “generalized graphical method for evaluating formation constants and summarizing well‐field history” Eos, Vol 27, pp.526-34, 1946.
[14] Butler, J. J. and Liu, W., “Pumping tests in nonuniform aquifers: The radially asymmetric case”, Water Resources Research, Vol 29, pp.259-269, 1993.
[15] 黃奕儒,「現地跨孔式抽水試驗推估異質性含水層水文地質特性」,國立中央大學應用地質學系,碩士論文,2009。
[16] Lunt, I., Hubbard, S. and Rubin, Y., “Soil moisture content estimation using ground-penetrating radar reflection data”, Journal of Hydrology, Vol 307, pp. 254-269, 2005.
[17] Vidstrand, P., “Comparison of upscaling methods to estimate hydraulic conductivity”, Groundwater, Vol 39, pp.401-407, 2001.
[18] Jensen, J. L., “Use of the geometric average for effective permeability estimation”, Mathematical geology, Vol 23, pp.833-840, 1991.
[19] Desbarats, A. J., and Dimitrakopoulos, R., “Geostatistical modeling of transmissibility for 2D reservoir studies”, SPE Formation Evaluation, Vol 5(04) , pp.437-443. (1990).
[20] Journel, A., Deutsch and C., Desbarats, A., Power averaging for block effective permeability, SPE California Regional Meeting, Society of Petroleum Engineers, 1986.
[21] Jackson, C. P., Hoch, A. R. and Todman, S., “Self‐consistency of a heterogeneous continuum porous medium representation of a fractured medium”, Water Resources Research, Vol 36, pp.189-202, 2000.
[22] McKenna, S. A., and Rautman, C. A., Scaling of material properties for Yucca Mountain: Literature review and numerical experiments on saturated hydraulic conductivity, National Technical Information Service. US Department of Commerce, 1996.
[23] Hartley, L., Hunter, F., Jackson, P., McCarthy, R., Gylling, B., and Marsic, N., “Regional hydrogeological simulations using CONNECTFLOW”, Preliminary site description Laxemar subarea–version, 1, 2006.
[24] Oda, M., “Permeability tensor for discontinuous rock masses”, Geotechnique, Vol 35, pp.483-95, 1985.
[25] Priest, S. and Hudson, J., “Estimation of discontinuity spacing and trace length using scanline surveys”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 183-197, 1981.
[26] Kulatilake, P., Wathugala, D. and Stephansson, O., “Joint network modelling with a validation exercise in Stripa Mine, Sweden”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 503-526, 1993.
[27] 李振誥,「岩體地表滲流率與內寬現場試驗之研究」,國立成功大學,國科會研究報告,1995。
[28] 徐慶國,「岩體不連續面之量測及其空間分布之分析與模擬─以金門翟山坑道花崗片麻岩體為例」,國立中正大學地震研究所暨應用地球物理研究所,碩士論文,2007。
[29] 黃淞洋,「地表及井下不連續面參數分析與數值模擬-以金門東部花崗片麻岩體為例」,國立中正大學應用地球物理研究所,碩士論文,2008。
[30] Follin, S., Site descriptive modelling, SDM-Site Forsmark. Swedish Nuclear Fuel and Waste Management, 2008.
[31] 李禎常,「複合破裂岩體地下水流與污染物傳輸之研究」,國立成功大學資源工程學系,博士論文,2011。
[32] La Pointe, P. R., Wallmann, P. and Follin, S., “Estimation of effective block conductivities based on discrete network analyses using data from the Äspö site”, Swedish Nuclear Fuel and Waste Management Company, 1995.
[33] Einstein, H. H., Veneziano, D., Baecher, G. B., and O′reilly, K. J. “The effect of discontinuity persistence on rock slope stability”, InInternational journal of rock mechanics and mining sciences & geomechanics abstracts , Vol. 20(5), pp. 227-236, 1983.
[34] Dershowitz, W. and Einstein, H., “Characterizing rock joint geometry with joint system models”, Rock Mechanics and Rock Engineering, Vol 21, pp.21-51, 1988.
[35] 李振誥,「估計岩體中不連續面組數,及各組之平均位態與頻率之探討」,地工技術雜誌,第39期,64-76頁,1992。
[36] Priest, S., Fracture analysis for rock engineering, Chapman & Hall, London, 1993.
[37] Priest, S. and Hudson, J., “Discontinuity spacings in rock”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, pp.135-148, 1976.
[38] Snow, D. T., “The frequency and apertures of fractures in rock”, International journal of Rock mechanics and Mining sciences & Geomechanics Abstracts, pp.23-40, 1970.
[39] Raven, K., Smedley, J., Sweezey, R. and Novakowski, K., “Field investigations of a small ground water flow system in fractured monzonitic gneiss”, Int Congr Int Assoc Hydrogeol, Vol 17, pp.72-86, 1985.
[40] Witherspoon, P. A., Wang, J., Iwai, K. and Gale, J., “Validity of cubic law for fluid flow in a deformable rock fracture”, Water resources research, Vol 16, pp.1016-1024, 1980.
[41] Dershowitz, W. S., Rock joint systems: Massachusetts Institute of Technology, 1984.
[42] Wang, H., Forster, C. and Deo, M., “Simulating Naturally Fractured Reservoirs: Comparing Discrete Fracture Network Models to the Upscaled Equivalents”, Presentation at the AAPG Annual Convention, San Antonio, Texas, 2008.
[43] Barenblatt, G., Zheltov, I. P. and Kochina, I., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, Journal of applied mathematics and mechanics, Vol 24, pp.1286-1303, 1960.
[44] Marsily, G. d., Hydrogéologie quantitative. Masson, 1981.
[45] 林宏奕,「破裂岩體優勢水流路徑之研究」,國立成功大學資源工程學系,碩士論文,2009。
[46] Long, J., Remer, J., Wilson, C. and Witherspoon, P., “Porous media equivalents for networks of discontinuous fractures”, Water Resources Research, Vol 18, pp.645-658, 1982.
[47] PetroWiki:http://petrowiki.org/Upscaling_of_grid_properties_in_reservoir_simulation
[48] Bear, J., and Bachmat, Y., “Introduction to modeling phenomena of transport in porous media”, 1990.
[49] Bear, J., Dynamics of fluids in porous media, Eisevier, New York, 764p, 1972.
[50] Snow, D. T., “Anisotropie permeability of fractured media”, Water Resources Research, Vol 5, pp.1273-1289, 1969.
[51] Robinson, P. C., Connectivity, flow and transport in network models of fractured media, 1984.
[52] Dershowitz, W., Lee, G., Geier, J., Foxford, T., LaPointe, P. and Thomas, A., “Interactive discrete feature data analysis, geometric modeling and exploration simulation”, User documentation version 2
[53] Kreyszig, E., Advanced Engineering Mathematics, International Student Version, 10th ed.,New York, John Wiley & Sons, 2011.
[54] Pruess, K., Oldenburg, C. and Moridis, G., TOUGH2 user′s guide version 2, Lawrence Berkeley National Laboratory, 1999.
[55] Harbaugh, A. W., MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process, US Department of the Interior, US Geological Survey Reston, VA, USA, 2005.
[56] Zhang, L. and Einstein, H., “Estimating the mean trace length of rock discontinuities”, Rock Mechanics and Rock Engineering, Vol 31, pp.217-235, 1998.
[57] Lee, C. C., Lee, C. H., Yeh, H. F. and Lin, H. I., “Modeling spatial fracture intensity as a control on flow in fractured rock”, Environmental Earth Sciences, Vol 63, pp.1199-1211, 2011.
[58] Lim, D. H., Kim, J. Y. and Park, J. W., Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea PHASE I: Model Development, 2011.
[59] Miller, I., Lee, G. and Dershowitz, W., MAFIC-matrix/fracture interaction code with heat and solute transport-user documentation, version 1.6. Golder Associates Inc, Redmond, WA., 1-87, 1999.
[60] 劉明坤,「離散裂隙網路數值模擬: 以花蓮溪畔坑道花崗片麻岩體為例」,國立中正大學應用地球物理研究所,碩士論文,2014。
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明