博碩士論文 103624601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:34.239.176.198
姓名 陳國勇(Tr?n Qu?c D?ng)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Numerical modeling of large-scale surface water and groundwater interactions in northwest area of Ho Chi Minh, Vietnam)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水是供應民生、工業及農業活動的重要資源之一。地下水與地表水的交互作用會導致水的供需以及品質的改變,因此對於區域水資源管理而言,瞭解地下水與地表水之間的交互行為是很重要的。過去以有許多研究利用不同假設與模式致力於地下水與地表水間交互作用的探討,其中GSFLOW (Groundwater - Surface water Flow)採用了過去模式的優點,並基於PRMS (Precipitation Runoff
Modeling System ) 與MODFLOW-2005 (Modular Groundwater Flow) 模式進行地下水與地表水間交互作用的探討,然而應用於大尺度與複雜問題時,產生MODFLOW-2005與PRMS模式的複雜輸入檔則是極為挑戰的議題。為了解決此問題,本研究目的有 (1) 利用GMS (Groundwater Modeling System) 介面評估MODFLOW-2005與MODFLOW-2000的兼容性,並利用四種不同網格情境挑選最適合的網格大小,這些情境包括不同網格細化方式,X、Y與Z方向分別切割不同網格大小,包含 20 x 30 x 2、60 x 90 x 2、 120x 180 x 2、與180 x 270 x 2的網格數目;(2) 利用觀測數據與穩態模擬結果驗證越南胡志明市西北地區的地下水位分佈;(3) 利用不同的MODFLOW-2005套件評估研究場址的水頭變化,水預算和輸入數據造成的影響;(4) 分析土壤的日貯蓄變化以及PRMS輸入參數對於研究場址的土壤和非飽和帶的影響。本研究的成果顯示 (1) 本研究能利用GMS介面的優勢將GSFLOW中MODFLOW-2000的輸入結合到GMS中的MODFLOW-2005,而研究指出最適合進行數值模擬的網格大小為120 x 180 x 2;(2) 在MODFLOW-2005中,輸入與輸出的貯蓄率差異會影響約50%、約-332.25 m3的研究場址內單位體積供需變化,研究區域內的水頭分佈從西北向東南逐漸減小,並在西部,南部和東南部出現小於2 m的水頭值;(3) 本研究利用PRMS得到了相似的土壤和非飽和帶貯蓄量變化,飽和與非飽和帶的土壤貯蓄量之中的流入貯蓄量分別為50.35 %和50.04 %,而輸出貯蓄量則分別是49.65%和49.96%,儲存量變化分別為3.34 m3和1379.44 m3。徑流和入滲係數的變化造成土壤貯蓄變化增加約6.89倍 (23.02 m3),但是土壤區域的參數變化則造成非飽和帶的貯蓄變化下降約0.47倍 (652.37 m3)。
摘要(英) Groundwater is one of the important water resources to supply domestic, industry and agriculture activities. Groundwater and surface water interactions can lead to the changes of water budget and water quality. The understanding of the surface water and groundwater interaction behaviors is critical for the regional water resources management. Efforts have been devoted on the issues of groundwater and surface water interactions by using different approaches and various models. Taking advantages of recent studies in developing groundwater models, the Groundwater - Surface water Flow (GSFLOW) model based on the integrations of the Precipitation Runoff Modeling System (PRMS) and the Modular Groundwater Flow (MODFLOW-2005) model is developed to account for interactions between surface water and groundwater flows. However, the text input formats in MODFLOW-2005 and PRMS has limited the implementation of GSFLOW to practical problems with large-scale domains and complex parameter distributions. The objectives of the study are (1) to evaluate the compatibility of MODFLOW-2005 and MODFLOW-2000 based on Groundwater Modeling System (GMS) interface, and to evaluate suitable cell sizes by four testing cases, including the numbers of cells 20x30x2, 60x90x2, 120x180x2, and 180x270x2, in x, y, and z directions, (2) to validate the groundwater levels between observed data and steady-state simulated results in the northwest area of Ho Chi Minh-Vietnam, (3) to assess head variations, water budgets, and the particular effects of input data in various packages of MODFLOW-2005 for the study site, and (4) to analyze daily variations of storage changes, and effects of PRMS input parameters on soil and unsaturated zones at the study area. The results of the study show that (1) the study can take the advantage of GMS interface to incorporate inputs of MODFLOW-2000 in GMS for MODFLOW-2005 in GSFLOW. The suitable cells size of numerical simulations is 120 rows, 180 columns, and two layers for the study area. (2) In MODFLOW-2005, the volumetric budget of study area is influenced approximately 50 % for input and output storage, and -332.25 m3 for the difference of input and output storages. The head distribution decreases from northwest to southeast with low head values less than 2 m in west, south, and southeast of study area. (3) In PRMS, similar variation of soil and unsaturated zonal storages are obtained. The soil and unsaturated zonal storages are 50.35 % and 50.04 % for input storage, 49.65 % and 49.96 % for output storage, and 3.34 m3 and 1379.44 m3 for storage change, respectively. The alterations of runoff and infiltration parameters increase up to 6.89 times of storage changes (23.02 m3) in soil zone, and the changes of soil zone parameters decrease down to 0.47 times of storage changes (652.37 m3) in the unsaturated zone.
關鍵字(中) ★ 地表地下水交互作用
★ PRMS
★ 數值模式
★ GSFLOW
★ MODFLOW-2000
★ MODFLOW-2005
關鍵字(英) ★ groundwater and surface water interaction
★ PRMS
★ model
★ GSFLOW
★ MODFLOW-2000
★ MODFLOW-2005
論文目次 ABSTRACT i
摘要 iii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
EXPLANATION OF SYMBOLS xi
LIST OF ABBREVIATIONS xii
CHAPTER 1: 1
INTRODUCTION 1
1.1. Literature Review 1
1.2. Objectives and Thesis Structure 3
CHAPTER 2: 6
MATHEMATICAL MODEL 6
2.1. PRMS Model 6
2.2. MODFLOW-2005 Model 8
2.2.1. MODFLOW-2005 Input Files 8
2.2.1. MODFLOW-2005 Output Files 18
2.3. GSFLOW Model 18
2.3.1. Modular Modeling System Files 19
2.3.1.1. GSFLOW Control File 20
2.3.1.2. PRMS Data File 22
2.3.1.3. PRMS Parameter File 22
2.3.1.3.1. PRMS Parameter File Format 23
2.3.1.3.2. PRMS Modules 24
2.3.1.3.3. GSFLOW Modules 38
2.3.2. GSFLOW Output Files 41
2.4. Simulation procedures 43
CHAPTER 3: 46
SIMULATION MODELING – CASE STUDY IN NORTHWEST AREA OF HO CHI MINH, VIETNAM 46
3.1. Site Description 46
3.2. Conceptual Model 55
3.3. Results and Discussions 61
3.3.1. A Compatible Model for MODFLOW-2005 61
3.3.2. Grid-Cell Size Refinement 62
3.3.3. MODFLOW-2005 Simulations 64
3.3.4. GSFLOW Simulations 68
3.3.5. Validation Process 73
CHAPTER 4: 75
CONCLUSION 75
REFERENCES 78
APPENDIXES 88
參考文獻 [1] Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998, Large area hydrologic modeling and assessment part I: model development. JAWRA J. Am. Water Resour. Assoc. 34 (1), 73-89.
[2] Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., Neitsch, S.L., 2011, Soil and Water Assessment Tool Input/Output File Documentation Version 2009. Texas Water Resources Institute Technical Report No. 365 (2011)
[3] Barlow, P.M., DeSimone, L.A., Moench, A.F., 2000, Aquifer response to stream stage and recharge variations. II. Convolution method and applications. J. Hydrol. 230 (3-4), 211-229.
[4] Berris, S.N., Hess, G.W., and Bohman, L.R., 2001, River and reservoir operation model, Truckee River basin, California and Nevada, 1998: U.S. Geological Survey Water-Resources Investigations Report 01-4017, 138 p.
[5] Beven, K.J., Kirkby, M.J., Schoffield, N., and Tagg, H., 1984, Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments: Journal of Hydrology, v. 69, p. 119–143.
[6] Borah, D.K., Bera, M., 2003, Watershed scale hydrologic and nonpoint source pollution models: review of mathematical bases. Trans. ASAE 46 (6), 1553-1566.
[7] Brooks, R.H., and Corey, A.T., 1966, Properties of porous media affecting fluid flow: Journal of Irrigation and Drainage, v. 101, p. 85-92.
[8] Brunner, P., Simmons, C.T., 2012, HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water 50 (2), 170-176.
[9] Bui, T.V., 2010, D? An Tri?n Khai Khoa H?c Cong Ngh? Bien H?i B?n ?? ??a Ch?t, B?n ?? ??a Ch?t Th?y V?n va B?n ?? ??a Ch?t Cong Trinh Thanh Ph? H? Chi Minh-T? l? 1/50.000.
[10] Chang, L.C., Ho, C.C., Yeh, M.S., Yang, C.C., 2010, An integrating approach for conjunctive use planning of surface and subsurface water system. Water Resour. Manag. 25, pp. 59–78.
[11] Chen, Z., Govindaraju, R.S., and Kavvas, M.L., 1994, Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields-1. Development of models: Water Resources Research, v. 30, no. 2, p. 523-533.
[12] Cheng, X., and Anderson, M.P., 1993, Numerical simulations of groundwater interaction with lakes allowing for fluctuating lake levels: Ground Water, v. 31, no. 6, p. 929-933.
[13] Chow, V.T., Maidment, D.R., and Mays, L.W., 1988, Applied Hydrology: New York, New York, McGraw-Hill, Inc., 572 p.
[14] Clark, M.P., and Hay, L.E., 2004, Use of medium-range numerical weather prediction model output to produce forecasts of streamflow: Journal of Hydrometeorology, v. 5, no. 1, p. 15-32.
[15] Cosner, O.J., and Harsh, J.F., 1978, Digital-model simulation of the glacial-outwash aquifer, Otter Creek –Dry Creek basin, Cortland County, New York: U.S. Geological Survey Water Resources Investigations Report 78-71, 34 p.
[16] Council, G.W., 1998, A lake package for MODFLOW, in Poeter, E., Zheng, C., and Hill, M.C., MODFLOW ‘98: Colorado School of Mines, Golden, Colo., v. 2, p. 675-682.
[17] Danskin, W.R., 1998, Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California: U.S. Geological Survey Water-Supply Paper 2370-H, 175 p.
[18] Ely, D.M., 2006, Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system: U.S. Geological Survey Scientific Investigations Report 2006-5041, 21 p.
[19] Emerson, D.G., 1991, Documentation of a heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model: U.S. Geological Survey Open-File Report 91-462, 92 p.
[20] Freeze, R.A., 1971, Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin: Water Resources Research, v. 7, no. 2, p. 347-366.
[21] Fulp, T.J., Vickers, W.B., Williams, B., and King, D.L., 1995, Decision support for water resources management in the Colorado River region, in Ahuja, L., Leppert, J., Rojas, K., and Seely, E., Workshop on computer applications in water management: Fort Collins, Colo., p. 24-27.
[22] Gilfedder, M., Rassam, D.W., Stenson, M.P., Jolly, I.D.,Walker, G.R., Littleboy, M., 2012, Incorporating land-use changes and surface-groundwater interactions in a simple catchment water yield model. Environ. Model. Softw. 38, 62-73.
[23] Graham, N., Refsgaard, A., 2001, MIKE SHE: A Distributed, Physically Based Modelling System for Surface Water/groundwater Interactions Golden, Colorado.
[24] Graham, D.N., Butts, M.B., 2005, Flexible, integrated watershed modelling with MIKE SHE. In: V.P., S., D.K., F (Eds.), Watershed Models. CRC Press, pp. 245-272.
[25] Guo, W., and Langevin, C.D., 2002, User’s Guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chapter A7, 77 p.
[26] Hamon, W.R., 1961, Estimating Potential evapotranspiration: Proceedings of the American Society of Civil Engineers, Journal of the Hydraulic Division, v. 87, no. HY3, p. 107-120.
[27] Harbaug, A.W., 2005, MODFLOW-2005, the U.S. Geological Survey modular groundwater model - the groundwater ?ow process. USGS Techniques and Methods: 6-A16. Available at: http://pubs.usgs.gov/tm/2005/tm6A16/PDF.htm (accessed 07.03.14.).
[28] Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model-modularization concepts and the ground-water flow process: U.S. Geological Survey Open-File Report 00-92, 121 p.
[29] Harter, T., and Hopmans, J.W., 2004, Role of vadose-zone flow processes in regional scale hydrology-review, opportunities and challenges, in Feddes, R.A., De Rooij, G.H., and Van Dam, J.C., eds., Unsaturated Zone Modeling - Progress, Challenges and Applications: Dordrecht, The Netherlands, Kluwer Academic Publisher, Wageningen Frontis Series, p. 179-208.
[30] Hay, L.E., and Clark, M.P., 2003, Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States: Journal of Hydrology, v. 282, p. 56-75.
[31] Hay, L.E., Clark, M.P., Wilby, R.L., Gutowski, W.J., Leavesley, G.H., Pan, Z., Arritt, R.W., and Takle, E.S., 2002, Use of regional climate model output for hydrologic simulations: Journal of Hydrometeorology, v. 3, p. 571-590.
[32] Hill, M.C., 1990, Preconditioned Conjugate Gradient 2 (PCG2), A computer program for solving ground-water flow equations: U.S. Geological Survey Water-Resources Investigations Report 90-4048, 43 p.
[33] Hill, M.C., Banta, E.R., and Harbaugh, A.W., 2000, MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model - User Guide to the observations, sensitivity, and parameter-estimation processes and three post-processing programs: U.S. Geological Survey Open-File Report 00-184, 210 p.
[34] Hunt, R.J., and Steuer, J.J., 2000, Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 00-4172, 33 p.
[35] Huntington, J.L., Niswonger, R.G., 2012, Role of surface water and groundwater interactions on projected summertime stream?ow in snow dominated regions: an integrated modeling approach. Water Resour. Res. 48 (11), W11524.
[36] Jensen, M.E., Rob, D.C.N., and Franzoy, C.E., 1969, Scheduling irrigations using climate-crop-soil data, National Conference on Water Resources Engineering of the American Society of Civil Engineers: New Orleans, La. [Proceedings], p. 20.
[37] Jeton, A.E., 1999, Precipitation-runoff simulations for the upper part of the Truckee River Basin, California and Nevada: U.S. Geological Survey Water-Resources Investigations Report 99-4282, 41 p.
[38] Jobson, H.E., and Harbaugh, A.W., 1999, Modifications to the diffusion analogy surface-water flow model (DAFLOW) for coupling to the modlular finite-difference ground-water flow model (MODFLOW): U.S. Geological Survey Open-File Report 99-217, 107 p.
[39] Kollet, S.J., Maxwell, R.M., 2006, Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29, pp. 945–958
[40] Konikow, L.F., Goode, D.J., and Hornberger, G.Z., 1996, A three-dimensional method-of-characteristics solute-transport model (MOC3D): U.S. Geological Survey Water-Resources Investigations Report 96-4267, 87 p.
[41] Langevin, C.D., Shoemaker, W.B., and Guo, W., 2003, MODFLOW-2000, the U.S. Geological Survey modular ground-water model-documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS transport process (IMT): U.S. Geological Survey Open-File Report 03-426, 43 p.
[42] Leavesley, G.H., Lichty, R.W., Troutman, B.M., Saindon, L.G., 1983, Precipitation runoff Modeling System; User′s Manual USGS Water resources Investigations Report. USGS Water Resources Investigations Report: 83-4238, 206pp. Available at: http://pubs.usgs.gov/wri/1983/4238/report.pdf (accessed 07.03.14.).
[43] Leavesley, G.H., Restrepo, P.J., Markstrom, S.L., Dixon, M., and Stannard, L.G., 1996b, The Modular Modeling System (MMS): User’s manual: U.S. Geological Survey Open-File Report 96-151, 142 p.
[44] Lindgren, R.J., and Landon, M.K., 1999, Effects of ground-water withdrawals on the Rock River and associated valley aquifer, eastern Rock County, Minnesota: U.S. Geological Survey Water-Resources Investigations Report 98-4157, 103 p.
[45] Mantoglou, A., 1992, A theoretical approach for modeling unsaturated flow in spatially variable soils - Effective flow models in finite domains and nonstationarity: Water Resources Research, v. 28, no. 1, p. 251-267.
[46] Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E., Barlow, P.M., 2008, GSFLOW Coupled Groundwater and Surface-water FLOW Model Based on the Integration of the Precipitation runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1, 240pp. Available at: http://pubs.usgs.gov/tm/ tm6d1/pdf/tm6d1.pdf (accessed 07.03.14.).
[47] Markstrom, S.L., 2012, Integrated Watershed scale Response to Climate Change for Selected Basins across the United States. U.S. Geological Survey Scienti?c Investigations Report 2011-5077, 143pp. Available at: http://pubs.usgs.gov/sir/2011/5077/SIR11-5077_508.pdf (accessed 07.03.14.).
[48] Mastin, M.C., and Vaccaro, J.J., 2002, Documentation of Precipitation Runoff Modeling System modules for the Modular Modeling System modified for the Watershed and River Systems Management Program: U.S. Geological Survey Open-File Report 2002-362, 5 p.
[49] McCallum, A.M., Andersen, M.S., Giambastiani, B.M.S., Kelly, B.F.J., Ian Acworth, R., 2013, River aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol. Process. 27 (7), 1072-1085.
[50] Merritt, M.L., and Konikow, L.F., 2000, Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute-transport model: U.S. Geological Survey Water-Resources Investigations Report 00-4167, 146 p.
[51] Morgan, D.S., 1988, Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California: U.S. Geological Survey Water-Resources Investigations Report 87-4058, 92 p.
[52] Nishikawa, T., Izbicki, J.A., Hevesi, J.A., Stamos, C.L., and Martin, P., 2005, Evaluation of geohydrologic framework, recharge estimates, and ground-water flow of the Joshua Tree area, San Bernardino County, California: U.S. Geological Survey Scientific Investigations Report 2004–5267, 127 p.
[53] Niswonger, R.G., and Prudic, D.E., 2005, Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams - A modification to SFR1: U.S. Geological Survey Techniques and Methods 6-A13, 62 p.
[54] Niswonger, R.G., Prudic, D.E., and Regan, R.S., 2006a, Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A19, 74 p.
[55] Niswonger, R.G., Prudic, D.E., Fogg, G.E., Stonestrom, D.A., Buckland, E.M., 2008, Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams. Water Resour. Res. 44 (5), W05418.
[56] Olson, S.A., 2002, Flow-frequency characteristics of Vermont streams: U.S. Geological Survey Water-Resources Investigations Report 2002-4238, 47 p.
[57] Perez, A.J., Abrahao, R., Causape, J., Cirpka, O.A., Burger, C.M., 2011, Simulating the transition of a semi-arid rainfed catchment towards irrigation agriculture. J. Hydrol. 409 (3-4), 663-681.
[58] Panday, S., and Huyakorn, P.S., 2004, A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow: Advances in Water Resources, v. 27, no. 4, p. 361-382.
[59] Prudic, D.E., 1989, Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model: U.S. Geological Survey Open-File Report 88-729 113 p.
[60] Prudic, D.E., Konikow, L.F., and Banta, E.R., 2004, A new Streamflow-Routing (SFR1) Package to simulate stream-aquifer interaction with MODFLOW-2000: U.S. Geological Survey Open-File Report 2004-1042, 95 p.
[61] Rankl, J.G., 1987, Analysis of sediment production from two small semiarid basins in Wyoming: U.S. Geological Survey Water-Resources Investigations Report 85-4314, 27 p.
[62] Rassam, D.W., Peeters, L., Pickett, T., Jolly, I., Holz, L., 2013, Accounting for surface groundwater interactions and their uncertainty in river and groundwater models: a case study in the Namoi River, Australia. Environ. Model. Softw. 50(0), 108-119.
[63] Refsgaard, J.C., and Storm, B., 1995, MIKE SHE, in Singh, V.P., ed., Computer Models of Watershed Hydrology: Highlands Ranch, Colo., Water Resources Publications, p. 809-846.
[64] Ross, M.A., Tara, R.D., Geurink, J.S., and Stewart, M.T., 1997, FIPR Hydrologic Model Users Manual and Technical Documentation: Florida Institute of Phosphate Research, FIPR-OFR-88-03-085, Barton, Fla.
[65] Safavi, H.R., Esmikhani, M., 2013, Conjunctive use of surface water and groundwater: application of support vector machines (SVMs) and genetic algorithms. Water Resour. Manag., 27, pp. 2623–2644
[66] Said, A., Stevens, O.K., and Sehlke, G., 2005, Estimating water budget in a regional aquifer using HSFP-MODFLOW integrated model: Journal of the American Water Resources Association, v. 41, no. 1, p. 55-66.
[67] Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., D€ oll, P., Portmann, F.T., 2010, Groundwater use for irrigation - a global inventory. Hydrol. Earth Syst. Sci. Discuss. 7 (3), 3977-4021.
[68] Smith, R.E., and Hebbert, R.H.B., 1983, Mathematical simulation of interdependent surface and subsurface hydrologic processes: Water Resources Research, v. 19, no. 4, p. 987-1001.
[69] Sophocleous, M.A., Koelliker, J.K., Govindaraju, R.S., Birdie, T., Ramireddygari, S.R., Perkins, S.P., 1999, Integrated numerical modeling for basin wide water management: the case of the Rattlesnake Creek basin in south-central Kansas. J. Hydrol. 214 (1-4), 179-196.
[70] Sophocleous, M., and Perkins, S.P., 2000, Methodology and application of combined watershed and groundwater model in Kansas: Journal of Hydrology, v. 236, p. 185-201.
[71] Sophocleous, M., 2002, Interactions between groundwater and surface water: the state of the science. Hydrogeol. J. 10 (1), 52-67.
[72] Steuer, J.J., and Hunt, R.J., 2001, Use of a watershed-modeling approach to assess hydrologic effects of urbanization, North Fork Pheasant Branch basin near Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 2001-4113, 49 p.
[73] Swain, E.D., and Wexler, E.J., 1996, A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chapter A6, 125 p.
[74] Therrien, R., McLaren, R.G., Sudicky, E.A., Panday, S.M., 2010, HydroGeoSphere A Three dimensional Numerical Model Describing Fully integrated Subsurface and Surface Flow and Solute Transport. Technical report.
[75] Thoms, R.B., Johnson, R.L., and Healy, R.W., 2006, User’s guide to the Variably Saturated Flow (VSF) process for MODFLOW: U.S. Geological Survey Techniques and Methods 6-A18, 58 p.
[76] Tian, Y., Zheng, Y., Wu, B., Wu, X., Liu, J., Zheng, C., 2015, Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ. Modell. Software, 63, pp. 170–184
[77] Vaccaro, J.J., 1992, Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington: Journal of Geophysical Research, v. 97, no. D3, p. 2821–2833.
[78] VanderKwaak, J.E., 1999, Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems: Ontario, Canada, University of Waterloo, Department of Earth Sciences, Ph.D. Dissertation, 217 p.
[79] VanderKwaak, J.E., Loague, K., 2001, Hydrologic Response simulations for the R-5 catchment with a comprehensive physics based model. Water Resour. Res. 37 (4), 999-1013.
[80] Vining, K.C., 2002, Simulation of streamflow and wetland storage, Starkweather Coulee subbasin, North Dakota, water years 1981-98: U.S. Geological Survey Water-Resources Investigations Report 02-4113, 28 p.
[81] Weill, S., Mazzia, A., Putti, M., Paniconi, C., 2011, Coupling water flow and solute transport into a physically-based surface–subsurface hydrological model. Adv. Water Resour., 34, pp. 128–136
[82] Werner, A.D., Gallagher, M.R., Weeks, S.W., 2006, Regional scale, fully coupled modelling of stream aquifer interaction in a tropical catchment. J. Hydrol. 328 (3-4), 497-510.
[83] Wilby, R.L., Hay, L.E., and Leavesley, G.H., 1999, A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado: Journal of Hydrology, v. 225, p. 67-91.
[84] Yates, D.N., Warner, T.T., and Leavesley, G.H., 2000, Prediction of a flash flood in complex terrain: Part II—A comparison of flood discharge simulations using rainfall input from radar, a dynamic model, and an automated algorithmic system: Journal of Applied Meteorology, v. 39, no. 6, p. 815-825.
[85] Zarriello, P.J., and Ries, K.G., III, 2000, A precipitation-runoff model for analysis of the effects of water withdrawals on streamflow, Ipswich River basin, Massachusetts: U.S. Geological Survey Water- Resources Investigations Report 2000-4029, 99 p.
指導教授 倪春發 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明