博碩士論文 103626601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.94.21.209
姓名 張琳(Lin Zhang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 非線性池水衝擊效應之三維數值模擬
(Three-dimensional numerical simulation of nonlinear sloshing)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
★ 蘭嶼海嘯石與1867年基隆海嘯之動力分析★ 山崩誘發之海嘯之數值研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在2015年尼泊爾地震中,有一段視頻記錄了飯店游泳池水劇烈飛濺過程。出於對地震引發的劇烈池水晃蕩效應的流場動力學和波浪形態的好奇,我們研究了有結構物在內的方形水池在非線性外加振盪下的強迫池水晃蕩效應。
本篇論文採用計算流體力學模式Splash3D研究池水晃蕩問題。Splash3D直接求解三維納維爾-斯托克斯方程,採用大渦類比模式作為紊流閉合模式。流體體積法(Volume of Fluid)結合PLIC (Piecewise Linear Interface Calculation)技術被用於追蹤複雜的發生碎波的自由液面。以外加加速度晃蕩池水。模式驗證部分,以數值類比結果與三維實驗實測值及前人研究對比,可得到良好的對比結果。
在完成模式驗證後,我們進行了地震力驅動下之方形水槽池水晃蕩效應模擬。水槽12公尺長,8公尺寬,18公尺深,其中水體深度7公尺,水體底部浸沒有被簡化為孔隙介質之結構物。地震晃動以三維地震加速度時序表示,加速度量級為水準方向0.5 g到1.2 g,垂直方向0.3 g到1.2 g。動力學分析集中在從三維角度描述波高、自由液面,流速向量場,壓力場,以及最重要的動能垂向分佈。有關地震力和底部結構物孔隙率的參數敏感性分析實驗結果也展示於文中。從模擬結果可以看到,相較於邊壁中央,在水池角落處可觀察到更大的平均波高。如果池壁足夠高,水池角落處最大波高可達6公尺。如果池壁不夠高,水體將翻越邊壁溢出造成體積損失,最大波高也因而較低。三維波浪形態如對角波和旋轉波可以從水位計耦合分析和自由液面分佈時間序列圖兩方面觀察到。
我們發現,顯著的流體動力學過程(80%的總動能)發生在上層30%的水體中,這被我們成為30-80假說。30-80現象亦可在各參數敏感性分析實驗中觀察到。當比較不同量級地震引發的釋性波高時,我們發現了與地震量級排序相異常的波高排序,並將異常部分歸因於與池水自然頻率發生共振,但仍推測可能是波浪調製及非線性交互作用導致了波高排序異常。文中亦通過自由池水振盪和快速傅裡葉分析討論內部結構物屬性,如圓柱高度,對水體自然頻率之影響。
摘要(英) In the event of 2015 Nepal earthquake, a worldwide broadcasting video clip showed a violent water spilling in a hotel swimming pool. Motivated by the curiosity to investigate the dynamics of fluid field and the wave motion of violent sloshing during an earthquake, we studied forced sloshing in a rectangular tank with internal structure, excited by nonlinear external excitation.
In this thesis, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved the 3D Navier-Stokes Equations directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series of external acceleration was used to excite the water. A series model validations were conducted by comparing numerical results with 3D experimental measurements and previous studies’ results. Good comparisons were observed.
After validations, we performed the simulations for considering a seismic excited sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide and 18 m deep, which contained water with 7 m in depth and the bottom structure simplified to porous medium. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction, respectively. We focused on describing the kinematics of the wave height, water surface, velocity vector field, pressure field, and most importantly, the vertical kinetic energy distribution in three dimensional view. Sensitivity tests about seismic magnitude, porosity of bottom structure were also conducted. From the simulations, higher averaged wave height can be found at the corner rather than at the middle of each side wall. The maximum wave height can be 6 m occurring at corners in case of water is well prescribed by side walls. If side walls were not high enough, water would jump cross it causing volume-loss, and the maximum wave height would be lower. Three-dimensional wave motion such as diagonal wave and swirling wave can be detected by both coupled wave height analysis and snapshots of free surface distribution.
We found that, the significant fluid dynamics (80% of kinetic energy) occurs at the top 30% of the water body, which can be called a 30-80 hypothesis. 30-80 phenomenon were also found in sensitivity testing cases. When comparing the significant wave heights (SWH) under different magnitude of earthquake events, we found the order anomaly of SWHs and conjectured the reason partly to resonance with natural frequency of the tank of water, furthermore, to wave modulation and nonlinear wave interactions. Discussions about how internal structure properties, rods’ height for example, influence the natural frequency of water body were performed by free sloshing analysis and FFT analysis.
關鍵字(中) ★ 三維非線性強迫池水晃蕩效應
★ 地震強迫
★ 有內部結構物之方形水箱
★ 自然頻率
★ Splash3D
關鍵字(英) ★ Splash3D
★ there-dimensional nonlinear forced sloshin
★ Seismic loading
★ rectangular tank with internal structure
★ natural frequency
論文目次 Table of Contents
Abstract i
摘要 iv
Appreciation vi
Table of Contents vii
List of Figures x
List of Tables xiv
Notation Illustration xv
Abbreviation xvi
1. Introduction 1
1.1 Motivation 1
1.2 Statement of problem 2
1.3 Literature Review 3
1.3.1 Analytical and numerical methods to study sloshing 4
1.3.2 Basic solutions of wave motions from theoretical studies 5
1.3.3 Nonlinear sloshing and violent sloshing 5
1.3.4 Sloshing effected by internal structure in the tank 7
1.3.5 Sloshing excited by seismic accelerations 8
1.4 Scope of Present Study 9
2. Computational model 11
2.1 Governing equation and turbulence closure model 11
2.2 Interface reconstruction method and boundary condition 16
2.2.1 VOF with PLIC 16
2.2.2 Partial-Cell Method 16
2.2.3 Boundary Conditions 17
2.3 Two-step projection method and discretization 18
2.4 Porous drag module 19
2.5 Numerical stability criterion 21
2.6 Real-time Acceleration Loading Module 22
3. Model validation 24
3.1 Lab Experiments 24
3.2 Numerical results 26
3.2.1 Convergence analysis 26
3.2.2 Gauge data validation 28
3.3 Validation with the previous studies 32
4. Sloshing excited under seismic excitation 45
4.1 Statement of the problem 45
4.2 Numerical setup 45
4.3 Case study 46
4.3.1 Fluid field analysis 47
4.3.2 Sensitivity test 52
4.3.2.1 Porosity testing 52
4.3.2.2 Seismic magnitude testing 53
4.3.2.3 Water temperature testing 54
5. Discussion 66
5.1 FFT used to calculate natural frequency 66
5.2 Possible reasons for SWH anomaly 71
5.3 Internal structure effect 72
6. Conclusion 84
7. Future work 85
Bibilographies 86
Appendix A 92
Appendix B 149
參考文獻 1 Ardakani, H.A., Bridges, T.J.: Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. J. Fluid Mech., 667, 474–519, 2011
2 Chen, BF, Nokes, R, Time-Independent Finite Difference Analysis OF Fully Non-Linear And Viscous Fluid Sloshing in a Rectangular Tank. J. Comput. Phys., Vol. 209, pp. 47-81, 2005.
3 Chen, Y.-H., Hwang, W.-S. & Ko, C.-H. Numerical simulation of the three-dimensional sloshing problem by boundary element method. J. Chinese Inst. Eng., Vol. 23, 321–330. 2000
4 Chen W, Haroun, MA, and Liu, F, Large amplitude liquid sloshing in seismically excited tanks. Earthq. Eng. Struct. D., Vol. 25: 653-669, 1996
5 Chorin, A.J., Numerical solution of the Navier–Stokes equations. Math. Comput. Vol. 22: 745–762. 1968
6 Chorin, A.J., On the convergence of discrete approximations of the Navier–Stokes equations. Math. Comput. Vol. 232: 341–353. 1969
7 Deardorff, J., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., Vol. 41 (2): 453–480. 1970
8 Faltinsen, OM, A Numerical nonlinear method of sloshing in tanks with two-dimensional flow. J. Ship Res., Vol. 22:193-202. 1978
9 Faltinsen, OM, Rognebakke, OF, Timokha AN, Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. J. Fluid Mech., Vol. 487, pp. 1-42, June 2003.
10 Faltinsen, OM, Rognebakke, OF, Timokha AN, Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. Part 2. Effect of Higher Modes. J. Fluid Mech., Vol. 523, pp. 199-218, January 2005.
11 Faltinsen, OM, Rognebakke, OF, Timokha AN, Classification of three-dimensional nonlinear sloshing in a square-base tank with finite depth. J. Fluid Struct., Vol. 20: 81-103, 2005
12 Faltinsen, OM, Rognebakke, OF, Timokha AN, Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. Part 3. Base Ratio Perturbations. J. Fluid Mech., Vol. 551, pp. 93-116, March 2006.
13 Faltinsen, O.M., Timokha, A.N., Sloshing. Cambridge University Press:2009
14 Faltinsen, O.M., Timokha, A.N., On sloshing modes in a circular tank. J. Fluid Mech., 695, 467-477, 2012
15 Faltinsen, O.M., Timokha, A.N., Multimodal analysis of weakly nonlinear sloshing in a spherical tank. J. Fluid Mech., 719, 129-16, 2013
16 Feng, Z. C. , Senthna, P. R., Symmetry-breaking bifurcations in resonant surface waves. J. Fluid Mech., Vol. 199, 495–518, 1989
17 Hatayama, K. Lessons from the Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks. J Seismol., Vol. 12: 255-263, 2003
18 Huang, NE et al., On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Phil. Trans. R. Soc. A, Vol. 374, 20150206
19 Ibrahim, RA and VN Pilipchuk. Recent advances in liquid sloshing dynamics. Appl. Mech. Rev, Vol. 54, 2001
20 Ibrahim, R.A., Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, New York, USA, 2005.
21 Gueyffier, D., J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for
3D flows, J. Comput. Phys. Vol.152: 423–456. 1999
22 Isaacson, M, S Premasiri, Hydrodynamic Damping Due to Baffles in a Rectangular Tank. Can J. Civil Eng., Vol. 28, pp. 608-616, 2001
23 Kim MS, Park JS, Lee WI. A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: application to the cavity filling and sloshing problems. Int. J. Numer. Methods Fluids, Vol. 42, pp: 791–812. 2003
24 Leonard, A. Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics A. Vol. 18: 237–248.1974
25 Lin, P., P.L.-F. Liu, A numerical study of breaking waves in the surf zone, J. Fluid Mech., Vol. 359:239–264. 1998
26 Lin, P., C.-W. Li, Wave–current interaction with a vertical square cylinder. Ocean Eng., Vol. 30: 855–876. 2003
27 Liu, DM, PZ Lin, A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys, Vol. 227, pp.3921-3939, 2008
28 Liu, D and Lin, PZ. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng, Vol, 227:3921-3939, 2009
29 Liu, P. L.-F., T.-R. Wu et al., Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech., Vol.536, pp: 107-144, 2005
30 Luo, M., C.G. Koh, W. Bai. A three-dimensional particle method for violent sloshing under regular and irregular excitations. Ocean Eng., Vol. 120, pp: 52–63, 2016
31 Mohammad Ali Goudarzi, Saeed Reza Sabbagh-Yazdi. Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dyn. Earthq. Eng., Vol. 43:355-365, 2012
32 Ming Ping-jian Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J. Hydrodyn., 22 (6): 856-864.2010
33 Miles, J. & Henderson, D. Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143–165. 1990
34 Perlin, M. & Schultz, W. W. Capillary effects on surface waves. Annu. Rev. Fluid Mech. 32, 241–274. 2000
35 Rider, W.J., D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. Vol. 141:112–152. 1998
36 Ruiz. RO et al., Modeling and experimental validation of a new type of tuned liquid damper. Acta Mech. 2016
37 Sagaut, P. Large Eddy Simulation for Incompressible Flows (Third Ed.). Springer. 2006
38 Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 91 (3): 99–164. March. 1963
39 Thacker, WC, Some Exact Solutions to the Nonlinear Shallow-Water Wave Equations, J. Fluid Mech., Vol. 107, pp. 499-508, 1981.
40 Van der Vorst H.A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, New York, USA, 2003.
41 Wang, C.Z., B.C. Khoo, Finite Element Analysis of Two-Dimensional Nonlinear Sloshing Problems in Random Excitations, Ocean Eng., Vol. 32, pp. 107-133, February 2005.
42 Wang, YH, CH Yeh, HWV Young, K Hu and MT Lo, On the computational complexity of the empirical mode decomposition algorithm. Physica A., vol. 400,Issue 15, pp. 159-167, 2014
43 Wu, CH, Faltinsen, OM, Chen, BF. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids, Vol. 63, pp. 9–26, 2012
44 Wu, CH, Faltinsen, OM, Chen, BF. Time-Independent Finite Difference and Ghost Cell Method to Study Sloshing Liquid in 2D and 3D Tanks with Internal Structures. Commun. Comput. Phys., Vol. 13, pp. 780-800, 2013
45 Wu, C.H., B.F. Chen, T.-K. Hung, Hydrodynamic forces induced by transient sloshing in a 3D rectangular tank due to oblique horizontal excitation, Comp. Math. Appl., Vol. 65, pp. 1163-1186, 2013
46 Wu, T.-R., 2004. A numerical study of three-dimensional breaking waves and turbulence effects. Ph.D. Dissertation, Cornell University.
47 Wu, G.X., Q.A. Ma, R.E. Taylor, Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Appl. Ocean Res. Vol. 20, pp: 337-355, 1998
48 Xue, MA, J Zheng, PZ Lin, Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles, J. Applied Math., 2012
49 Zhou, D., J. D. Wang, W. Q. Liu, Nonlinear Sloshing of Liquid in Rigid Cylindrical Container With a Rigid Annular Baffle: Free Vibration, Nonlinear Dyn., Vol. 78, pp. 2557-2576, December 2014.
50 Sketch of Six degree of Motion
http://www.oemoffhighway.com/article/10979955/inertial-measurement-sensors-improve-safety-in-ag-equipment
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2016-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明