博碩士論文 103683001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.16.147.124
姓名 李先明(Hsien-Ming Li)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 徑向行星際磁場下日側極光與電離層對流型態
(Dayside aurora and ionospheric convection under radial interplanetary magnetic fields)
相關論文
★ 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻★ 磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
★ 二胞型極光與行星際磁場間的關係★ 磁層頂位置之不對稱性研究
★ 兩類快速電漿流事件與夜側極光活動關係之研究★ 太陽風對地球磁層頂內側磁場之影響
★ 磁層頂日下點對峙距離和行星際磁場錐角值關係的研究★ 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
★ 太空環境中的兩個觀測難題: 前艏震波區域波擾動斜向傳播現象與 接觸不連續面的存在證據★ 徑向行星際磁場事件之特性及其對磁層之影響
★ 太空天氣對Formosat-2及Formosat-3異常事件影響之分析★ 多能量通道之極區沉降粒子研究
★ 水星磁層對行星際磁場與太陽風動壓的反應★ 應用長短期記憶遞迴神經網路預測Kp地磁指數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討2014年1月4日徑向行星際磁場事件分別對日側極光與電離層對流型態的影響程度。過去的研究偏重在對磁層的影響層面或是特殊極光現象上,不同於過去研究,我們整合來自挪威Svarlbard島上的全天影像儀、芬蘭Hankasalmi高頻雷達、DMSP衛星及SuperMAG觀測資料,實施日側極光與電離層對流型態分析。分析的結果表明,日側極光出現三類不同的型態:侷限在某個緯度範圍內亮度增加、極向運動與赤道向運動。電離層對流型態出現太陽向流、反太陽向流以及兩者共存現象,從日側極光與電離層對流型態說明徑向行星際場具有使場向電流增加與磁重聯的特性,增強的場向電流從DMSP衛星與SuperMAG觀測資料間接證明源自於磁鞘高速流的作用,不同於南向與北向行星際磁場對電離層對流有固定且可預測的對流型態,這些對流型態在徑向行星際磁場期間交替出現,未來在電離層對流型態預報上必須注意徑向行星際磁場。
摘要(英) This research explored the influence of the radial interplanetary magnetic field event on January 4, 2014 on the dayside aurora and ionospheric convection patterns, respectively. Previous studies focused on the impact on the magnetosphere or special aurora phenomena. Unlike previous studies, we coordinated the observations obtained from the all-sky imager on Svarlbard Island in Norway, the Hankasalmi high-frequency radar in Finland, DMSP satellites and SuperMAG data to examine the dayside aurora and ionospheric convection patterns for radial interplanetary magnetic field. The results of the analysis showed that there are three different patterns of dayside aurora: brightness increase limited to a certain latitude range, polar movement and equatorial movement. The convection patterns in the ionosphere included sunward flow, anti-sunward flow, and the coexistence of both. These patterns indicated that the radial interplanetary magnetic field had the characteristics of increasing the field-aligned current and magnetic reconnection. The enhanced field-aligned current indirectly proved from the observation data of DMSP satellite and SuperMAG that it originated from the effect of high-speed flow in the magnetosheath. Ionospheric convection was different from the fixed and predictable convection patterns under the southward and northward interplanetary magnetic fields. These convection patterns appeared alternately during the radial interplanetary magnetic field, and the radial interplanetary magnetic field must be paid attention to in the forecast of the ionospheric convection pattern in the future.
關鍵字(中) ★ 日側極光
★ 電離層對流
★ 徑向行星際磁場
★ 磁重聯
關鍵字(英) ★ dayside aurora
★ ionospheric convection
★ radial interplanetary magnetic field
★ magnetic reconnection
論文目次 中文摘要....................... i
英文摘要....................... ii
誌謝...........................iii
目錄...........................iv
圖目錄......................... vi
表目錄......................... viii
一、 緒論.......................1
1-1 日地關係簡介................ 1
1-2 徑向行星際磁場...............7
1-3 極光現象.....................11
1-4 高緯度電離層對流現象.......... 16
二、 觀測儀器簡介與事件選取.........19
2-1 太陽風參數觀測儀器與事件說明....19
2-1-1 Wind太空船簡介...............19
2-1-2 觀測事件說明.................22
2-1-3 延遲時間計算.................23
2-2 全天影像儀簡介................ 24
2-3 DMSP衛星任務簡介...............26
2-4 SuperDARN雷達簡介.............28
2-5 SuperMAG地磁資料簡介......... 30
三、 極光觀測現象與分析.............31
3-1 全天影像儀觀測資料..............31
3-2 DMSP衛星SSUSI觀測結果..........40
3-3 Longyearbyen地磁觀測結果.......41
3-4 討論...........................42
3-4-1 極光限制在緯度區間內亮度增加...42
3-4-2 極光具有運動型態..............46
3-4-3 地磁擾動現象..................51
3-5 小結...........................53
四、 電離層對流觀測現象與分析........55
4-1 芬蘭Hankasalmi雷達觀測資料......55
4-2 討論...........................60
4-2-1 對流發展不穩定階段............60
4-2-2 對流發展穩定階段..............67
4-3 小結...........................68
五、 總結與未來研究方向..............70
參考文獻............................72
參考文獻 Akasofu, S. I. (1964). The development of the auroral substorm. Planetary and Space
Science, 12(4), 273–282. https://doi.org/10.1016/0032-0633(64)90151-5
Akasofu, S. I., & Kan, J. R. (1980). Dayside and nightside auroral arc systems.
Geophysical Research Letters, 7(10), 753–756.
https://doi.org/10.1029/GL007i010p00753
Axford, W. I., & Hines, C. O. (1961). A unifying theory of high‐latitude geophysical
phenomena and geomagnetic storms. Canadian Journal of Physics, 39(10), 1433–
1464. https://doi.org/10.1139/p61-172
Belcher, J. W., & Davis, Jr., L. (1971). Large-amplitude Alfven Waves in the
interplanetary medium, 2. Journal of Geophysical Research, 76(16), 3534–3563.
https://doi.org/10.1029/JA076i016p03534
Blanco-Cano, X., Omidi, N., & Russell, C. T. (2009). Global hybrid simulations:
Foreshock waves and cavitons under radial interplanetary magnetic field
geometry. Journal of Geophysical Research, 114(A1), A01216.
https//doi.org/10.1029/2008JA013406
Borovsky, J. E., Birn, J., Echim, M. M., Fujita, S., Lysak, R. L., Knudsen D. J., et al.
(2020). Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator
Mechanisms. Space Science Reviews, 216, 1. https://doi.org/10.1007/s11214-019-
0619-5
Boudouridis, A., Zesta, E., Lyons, R., Anderson, P. C., & Lummerzheim, D. (2003).
Effect of solar wind pressure pulses on the size and strength of the auroral oval.
Journal of Geophysical Research, 108(A4), 8012. https://
doi.org/10.1029/2002JA009373
Cameron, T., & Jackel, B. (2016). Quantitative evaluation of solar wind time-shifting
methods. Space Weather, 14(11), 973–981.
https://doi.org/10.1002/2016SW001451
Cash, M. D., Hicks, S. W., Biesecker, D. A., Reinard, A. A., de Koning, C. A., & Weimer,
D. R. (2016). Validation of an operational product to determine L1 to Earth
propagation time delays. Space Weather, 14(2), 93–112.
https://doi.org/10.1002/2015SW001321
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., et al.
(2007). A decade of the Super Dual Auroral Radar Network (SuperDARN):
scientific achievements, new techniques and future directions. Surveys in
Geophysics, 28(1), 33–109. https://doi.org/10.1007/s10712-007-9017-8
Christensen, A. B., Lyons, L. R., Hecht, J. H., Sivjee, G. G., Meier, R. R., & Strickland,
D. G. (1987). Magnetic field‐aligned electric field acceleration and the
characteristics of the optical aurora. Journal of Geophysical Research, 92(A6),
6163–6167. https://doi.org/10.1029/JA092iA06p06163
Coleman Jr, P. J., Davis Jr, L., Smith, E. J., & Sonett, C. P. (1962). Interplanetary
Magnetic Fields. Science, 138(3545), 1099–1100.
https://doi.org/10.1126/science.138.3545.1099
Cowley, S. W. H., & Lockwood M. (1992). Excitation and decay of solar‐wind driven
flows in the magnetosphere‐ionosphere system. Annales Geophysicae, 10(1–2),
103–115.
Dandekar, B. S., & Pike, C. P. (1978). The midday, discrete auroral gap. Journal of
Geophysical Research, 83(A9), 4227–4236.
https://doi.org/10.1029/JA083iA09p04227
Delcourt, D. C., Malova, H. V., Zelenyi, L. M., Sauvaud, J.-A., Moore, T. E., & Fok, M.-
C. (2005). Energetic particle injections into the outer cusp during compression
events. Earth, Planets and Space, 57, 125–130.
https://doi.org/10.1186/BF03352556
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical
Review Letters, 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47
Eriksson, E., Vaivads, A., Graham, D. B., Khotyaintsev, Yu. V., Yordanova, E., Hietala,
H., et al. (2016). Strong current sheet at a magnetosheath jet: Kinetic structure and
electron acceleration. Journal of Geophysical Research: Space Physics, 121(10),
9608–9618. https://doi.org/10.1002/2016JA023146
Fairfield, D. H. (1971). Average and unusual locations of the Earth′s magnetopause and
bow shock. Journal of Geophysical Research, 76(28), 6700–6716.
https://doi.org/10.1029/JA076i028p06700
Farris, M. H., & Russell, C. T. (1994). Determining the standoff distance of the bow shock:
Mach number dependence and use of models. Journal of Geophysical Research,
99(A9), 17681–17689. https://doi.org/10.1029/94JA01020
Fasel, G. J. (1995). Dayside poleward moving auroral forms: A statistical study. Journal
of Geophysical Research, 100(A7), 11891–11905.
https://doi.org/10.1029/95JA00854
Feldstein, Y. I., & Starkov, G. V. (1967). Dynamics of auroral belt and polar geomagnetic
disturbances. Planetary and Space Science, 15(2), 209–229.
https://doi.org/10.1016/0032-0633(67)90190-0
Frey, H. U. (2007). Localized aurora beyond the auroral oval. Reviews of Geophysics,
45(1), RG1003. https://doi.org/10.1029/2005RG000174
Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., & Itonaga, M. (2003). A
numerical simulation of the geomagnetic sudden commencement: 1. Generation
of the field-aligned current associated with the preliminary impulse. Journal of
Geophysical Research, 108(A12), 1416. https://doi.org/10.1029/2002JA009407
Gillies, D. M., Knudsen, D., Rankin, R., Milan, S., & Donovan, E. (2018). A statistical
survey of the 630.0-nm optical signature of periodic auroral arcs resulting from
magnetospheric field line resonances. Geophysical Research Letters, 45(10),
4648–4655. https://doi.org/10.1029/ 2018GL077491
Gjerloev, J. W. (2012). The SuperMAG data processing technique. Journal of
Geophysical Research: Space Physics, 117(A09), A09213.
https://doi.org/10.1029/2012JA017683
Gosling, J. T., & Skoug, R. M. (2002). On the origin of radial magnetic fields in the
heliosphere. Journal of Geophysical Research, 107(A10), 1327.
https://doi.org/10.1029/2002JA009434
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E.
C., et al. (1995). DARN/SuperDARN: A global view of the dynamics of highlatitude convection. Space Science Reviews, 71(1–4), 763–796.
https://doi.org/10.1007/BF00751350
Grygorov, K., Němeček, Z., Šafránková, J., Přech, L., Pi, G., & Shue, J.-H. (2016).
Kelvin-Helmholtz wave at the subsolar magnetopause boundary layer under radial
IMF. Journal of Geophysical Research: Space Physics, 121(10), 9863–9879.
https://doi.org/ 10.1002/2016JA023068
Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., & Hedgecock, P. C. (1978).
The frontside boundary layer of the magnetopause and the problem of
reconnection. Journal of Geophysical Research, 83(A7), 3195–3126.
https://doi.org/10.1029/JA083iA07p03195
Hietala, H., Phan, T. D., Angelopoulos, V., Oieroset, M., Archer, M. O., Karlsson, T., &
Plaschke, F. (2018). In situ observations of a magnetosheath high-speed jet
triggering magnetopause reconnection. Geophysical Research Letters, 45(4),
1732–1740. https://doi.org/10.1002/2017GL076525
Hietala, H., & Plaschke F. (2013). On the generation of magnetosheath high-speed jets
by bow shock ripples. Journal of Geophysical Research: Space Physics, 118(11),
7237–7245. https://doi.org/10.1002/2013JA019172
Johnsen, M. G., & Lorentzen, D. A. (2012). A statistical analysis of the optical dayside
open/closed field line boundary. Journal of Geophysical Research, 117(A2),
A02218. https://doi.org/10.1029/2011JA016984
Kotova, G., Verigin, M., Gombosi, T., Kabin, K., Slavin, J., & Bezrukikh, V. (2021).
Physics-based analytical model of the planetary bow shock position and shape.
Journal of Geophysical Research: Space Physics, 126(6), e2021JA029104.
https://doi.org/10.1029/2021JA029104
Kivelson, M. G., & Russell, C. T. (1995). Introduction to space physics, Cambridge
University Press, New York.
Kustov, A. V., Lyatsky, W. B., & Sofko, G. J. (1998). Super Dual Auroral Radar Network
observations of near‐noon plasma convection at small interplanetary magnetic
field Bz and By. Journal of Geophysical Research, 103(A3), 4041–4050.
https://doi.org/10.1029/97JA03457
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K.
H., et al. (1995). The Wind Magnetic Field Investigation. Space Science Reviews,
71(1–4), 207–229. https://doi.org/10.1007/BF00751330
Li, H.-M., Shue, J.-H., Taguchi, S., Nosé, M., Hosokawa, K., Ruohoniemi, J. M., et al.
(2021). Dayside cusp aurorae and ionospheric convection under radial
interplanetary magnetic fields. Journal of Geophysical Research: Space Physics,
126(5), e2019JA027664. https://doi.org/10.1029/2019JA027664
Lockwood, M. (1991). The excitation of ionospheric convection. Journal of Atmospheric
and Terrestrial Physics, 53(3–4), 177–199. https://doi.org/10.1016/0021-
9169(91)90103-E
Lockwood, M., Carlson, H. C., & Sandholt, P. E. (1993). Implications of the altitude of
transient 630‐nm dayside auroral emissions. Journal of Geophysical Research,
98(A9), 15571–15587. https://doi.org/10.1029/93JA00811
Lorentzen, D. A., Deehr, C. S., Minow, J. I., Smith, R. W., Stenbaek‐Neielsen, H. C.,
Sigernes, F., et al. (1996). SCIFER‐Dayside auroral signatures of magnetospheric
energetic electrons. Geophysical Research Letters, 23(14), 1885–1888.
https://doi.org/1010.1029/96GL00593
Lorentzen, D. A., & Moen, J. (2000). Auroral proton and electron signatures in the
dayside aurora. Journal of Geophysical Research, 105(A6), 12733–12745.
https://doi.org/10.1029/1999JA900405
Lui, A. T. Y., Perreault, P., Akasofu, S.-I., & Anger, C. D. (1973). The diffuse aurora.
Planetary and Space Science, 21(5), 857–858. https://doi.org/10.1016/0032-
0633(73)90102-5
Maynard, N. C., Burke, W. J., Sandholt, P. E., Moen, J., Ober, D. M., Lester, M., et al.
(2001). Observations of simultaneous effects of merging in both hemispheres.
Journal of Geophysical Research, 106(A11), 24551–24577.
https://doi.org/10.1029/2000JA00315
Maynard, N. C., Moen, J., Burke, W. J., Lester, M., Ober, D. M., Scudder, J. D., et al.
(2004). Temporal-spatial structure of magnetic merging at the magnetopause
inferred from 557.7-nm all-sky images. Annales Geophysicae, 22(8), 2917–2942.
https://doi.org/10.5194/angeo-22-2917-2004
Mende, S. B., Rairden, R. L., Lanzerotti, L. J., & Maclennan, C. G. (1990). Magnetic
impulses and associated optical signatures in the dayside aurora. Geophysical
Research Letters, 17(2), 131–134. https://doi.org/10.1029/GL017i002p00131
Meng, C.-I., & Lundin, R. (1986). Auroral morphology of the midday oval. Journal of
Geophysical Research, 91(A2), 1572–1584.
https://doi.org/10.1029/JA091iA02p01572
Merka, J., Szabo, A., Šafránková, J., & Němeček, Z. (2003). Earth′s bow shock and
magnetopause in the case of a field‐aligned upstream flow: Observation and
model comparison. Journal of Geophysical Research, 108(A7), 1269.
https://doi.org/10.1029/2002JA009697
Murphy, N., Smith, E. J., & Schwadron, N. A. (2002). Strongly underwound magnetic
fields in co-rotating rarefaction regions: Observations and Implications.
Geophysical Research Letters, 29(22), 2066.
https://doi.org/10.1029/2002GL015164
Ness, N. F., & Burlaga, L. F. (2001). Spacecraft studies of the interplanetary magnetic
field. Journal of Geophysical Research, 106(A8), 15803–15817.
https://doi.org/10.1029/2000JA000118
Neugebauer, M., Goldstein, R., & Goldstein B. E. (1997). Features observed in the
trailing regions of interplanetary clouds from coronal mass ejections. Journal of
Geophysical Research, 102(A9), 19743–19751. https://doi.org/
10.1029/97JA01651
Newell, P. T., & Meng, C.-I. (1992). Mapping the dayside ionosphere to the
magnetosphere according to particle precipitation characteristics. Geophysical
Research Letters, 19(6), 609–612. https://doi.org/10.1029/92GL00404
Newell, P. T., Meng, C.‐I., Sibeck, D. G., & Lepping, R. (1989). Some low‐altitude cusp
dependencies on the interplanetary magnetic field. Journal of Geophysical
Research, 94(A7), 8921–8927. https://doi.org/10.1029/JA094iA07p08921
Newell, P. T., Sotirelis, T., & Wing, S. (2009). Diffuse, monoenergetic, and broadband
aurora: The global precipitation budget. Journal of Geophysical Research,
114(A9), A09207. https://doi.org/10.1029/2009JA014326
Nishino, M. N., Saito, Y., Tsunakawa, H., Harada, Y., Takahashi, F., Yokota, S., et al.
(2020). Decrease of the interplanetary magnetic field strength on the lunar dayside
and over the polar region. Icarus, 335, 113392.
https://doi.org/10.1016/j.icarus.2019.113392
Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., et
al. (1995). SWE, A Comprehensive Plasma Instrument for the Wind Spacecraft.
Space Science Reviews, 71(1–4), 55–77. https://doi.org/ 10.1007/BF00751326
Øieroset, M., Sandholt, P. E., Denig, W. F., & Cowley, S. W. H. (1997). Northward
interplanetary magnetic field cusp aurora and high‐latitude magnetopause
reconnection. Journal of Geophysical Research, 102(A6), 11349–11362.
https://doi.org/10.1029/97JA00559
Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields.
Astrophysical Journal, 128, 664–676. https://doi.org/10.1086/146579
Paxton, L. J., Morrison, D., Zhang, Y., Kil, H., Wolven, B., Ogorzalek, B. S., et al. (2002).
Validation of remote sensing products produced by the Special Sensor Ultraviolet
Scanning Imager (SSUSI): A far UV imaging spectrograph on DMSP F-16.
Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for
Atmospheric and Space Research IV, 4,485, 338–348.
https://doi.org/10.1117/12.454268
Pi, G., Shue, J.‐H., Chao, J.‐K., Němeček, Z., Šafránková, J., & Lin, C.‐H. (2014). A
reexamination of long duration radial IMF events. Journal of Geophysical
Research: Space Physics, 119(9), 7005–7011.
https://doi.org/10.1002/2014JA019993
Pi, G., Shue, J.-H., Grygorov, K., Li, H.-M., Němeček, Z., Šafránková, J., et al. (2017).
Evolution of the magnetic field structure outside the magnetopause under radial
IMF conditions. Journal of Geophysical Research: Space Physics, 122(4), 4051–
4063. https://doi.org/10.1002/2015JA021809
Plaschke, F., Hietala, H., & Angelopoulos, V. (2013). Anti-sunward high-speed jets in
the subsolar magnetosheath. Annales Geophysicae, 31(10), 1877–1889.
https://doi.org/10.5194/angeo-31-1877-2013
Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., et al.
(2018). Jets downstream of collisionless shocks. Space Science Reviews, 214(5),
81. https://doi.org/10.1007/s11214-018-0516-3
Qi, Q., Hui‐Gen, Y., Quan‐Ming, L., & Ze‐Jun, H. (2017). Correlation between emission
intensities in dayside auroral arcs and precipitating electron spectra. Chinese
Journal of Geophysics, 60(1), 1–11. https://doi.org/10.1002/cjg2.30023
Russell, C. T., & Elphic, R. C. (1978). Initial ISEE magnetometer results: magnetopause
observations. Space Science Reviews, 22(6), 681–715.
https://doi.org/10.1007/BF00212619
Samson, L. C., Cogger, L. L., & Pao, Q. (1996). Observations of field line resonances,
auroral arcs, and auroral vortex structures. Journal of Geophysical Research,
101(A8), 17373–17383. https://doi.org/10.1029/96JA01086
Samsonov, A. A., Nĕmeček, Z., Šafránková, J., & Jelínek, K. (2012). Why does the
subsolar magnetopause move sunward for radial interplanetary magnetic field?
Journal of Geophysical Research, 117(A5), A05221.
https://doi.org/10.1029/2011JA017429
Sandholt, P. E., Deehr, C., Egeland, A., Lybekk, B., Viereck, R., & Romick, G. (1986).
Signatures in the dayside aurora of plasma transfer from the magnetosheath.
Journal of Geophysical Research, 91(A9), 10063–10079.
https://doi.org/10.1029/JA091iA09p10063
Sandholt, P. E., Farrugia, C. J., & Denig, W. F. (2004). Dayside aurora and the role of
IMF |By|/| Bz|: detailed morphology and response to magnetopause reconnection.
Annales Geophysicae, 22(2), 613–628. https://doi.org/10.5194/angeo-22-613-
2004
Sandholt, P. E., Farrugia, C. J., Moen, J., Cowley, S. W. H., & Lybekk, B. (1998).
Dynamics of the aurora and associated convection currents during a cusp
bifurcation event. Geophysical Research Letters, 25(23), 4313–4316.
https://doi.org/10.1029/1998GL900113
Sandholt, P. E., Lockwood, M., Oguti, T., Cowley, S. W. H., Freeman, K., Lybekk, B.,
et al. (1990). Midday auroral breakup events and related energy and momentum
transfer from the magnetosheath. Journal of Geophysical Research, 95(A2),
1039–1060. https://doi.org/ 10.1029/JA095iA02p01039
Schwadron, N. A. (2002). An Explanation for Strongly Underwound Magnetic Field in
Co-rotating Rarefaction Regions and its Relationship to footpoint Motion on the
the Sun. Geophysical Research Letters, 29(14), 1663.
https://doi.org/10.1029/2002GL015028
Shue, J.-H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., et al. (1997).
A new functional form to study the solar wind control of the magnetopause size
and shape. Journal of Geophysical Research, 102(A5), 9497–9511.
https://doi.org/ 10.1029/97JA00196
Shue, J.-H., Chao, J.-K., Song, P., McFadden, J. P., Suvorova, A., Angelopoulos, V., et
al. (2009). Anomalous magnetosheath flows and distorted subsolar magnetopause
for radial interplanetary magnetic fields. Geophysical Research Letters, 36(18),
L18112. https://doi.org/10.1029/2009GL039842
Spreiter, J. R., Summers, A. L., & Alksne, A. Y. (1966). Hydrodynamic flow around the
magnetosphere. Planetary and Space Science, 14(3), 223–353.
https://doi.org/10.1016/0032-0633(66)90124-3
Suvorova, A. V., Shue, J.‐H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa,
H., et al. (2010). Magnetopause expansions for quasi‐radial interplanetary
magnetic field: THEMIS and Geotail observations. Journal of Geophysical
Research: Space Physics, 115(A10), A10216.
https://doi.org/10.1029/2010JA015404
Taguchi, S., Hosokawa, K., & Ogawa, Y. (2015). Investigating the particle precipitation
of a moving cusp aurora using simultaneous observations from the ground and
space. Progress in Earth and Planetary Science, 2: 11.
https://doi.org/10.1186/s40645-015-0044-7
Taguchi, S., Hosokawa, K., & Ogawa, Y. (2019). Plasma flow in the north‐south aligned
discrete aurora equatorward of the cusp. Journal of Geophysical Research: Space
Physics, 124(12), 10778–10793. https://doi.org/10.1029/2019JA026895
Taguchi, S., Hosokawa, K., Ogawa, Y., Aoki, T., & Taguchi, M. (2012). Double bursts
inside a poleward-moving auroral form in the cusp. Journal of Geophysical
Research: Space Physics, 117(A12), A12301. https://doi.org/
10.1029/2012JA018150
Tang, B. B., Wang, C., & Li, W. Y. (2013). The magnetosphere under the radial
interplanetary magnetic field: A numerical study. Journal of Geophysical
Research: Space Physics, 118(12), 7674–7682.
https://doi.org/10.1002/2013JA019155
Vorobjev, V. G., Starkov, G. V., Gustafsson, G., Feldshtein, Ia. I., & Shevnina, N. F.
(1975). Dynamics of day and night aurora during substorms. Planetary and Space
Science, 23(2), 269–278. https://doi.org/10.1016/0032-0633(75)90132-4
Walsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., et al. (2014).
Dawn-dusk asymmetries in the coupled solar wind-magnetosphere-ionsphere
system: a review. Annales Geophysicae, 32(7), 705–737.
https://doi.org/10.5194/angeo-32-705-2014
Wang, Z., Hu, H., Lu, J., Han, D., Liu, J., Wu, Y., et al. (2021). Observational evidence
of transient lobe reconnection triggered by sudden northern enhancement of IMF
Bz. Journal of Geophysical Research: Space Physics, 126(9), e2021JA029410.
https://doi.org/10.1029/2021JA029410
Wang, B., Nishimura, Y., Hietala, H., Lyons, L., Angelopoulos, V., Plaschke, F., et al.
(2018). Impacts of magnetosheath high-speed jets on the magnetosphere and
ionosphere measured by optical imaging and satellite observations. Journal of
Geophysical Research: Space Physics, 123(6), 4879–4894.
https://doi.org/10.1029/2017JA024954
Wilson, L. B., Brosius, A. L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley,
K., et al. (2021). A quarter century of wind spacecraft discoveries. Reviews of
Geophysics, 59(2), e2020RG000714. https://doi.org/10.1029/2020RG000714
World Data Center for Geomagnetism, Kyoto, Nosé, M., Iyemori, T., Sugiura, M., &
Kamei, T. (2015). Geomagnetic AE index. https://doi.org/10.17593/15031-54800
Zhou, X.-Y., Fukui, K., Carlson, H. C., Moen, J. I., & Strangeway, R. J. (2009). Shock
aurora: Ground-based imager observations. Journal of Geophysical Research,
114(A12), A12216. https://doi.org/10.1029/2009JA014186
指導教授 許志浤(Jih-Hong Shue) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明